Farklı parametreler için nanoakışkanlar ve çarpan jetlerin müşterek etkisinin sayısal incelenmesi

MUSTAFA KILIÇ, OKAN ÖZCAN
344 70

Öz


Bu çalışmada; nanoakışkanların çarpan akışkan jet tekniği ile kullanılarak, yüksek ısı akılı bir yüzeyden olan ısı transferinin iyileştirilmesi sayısal olarak incelenmiştir. Çalışmada, düz bir bakır yüzeyden gerçekleşen ısı transferi, farklı Reynolds sayıları (Re= 12000, 14000, 16000, 18000), farklı parçacık çapları (Dp=10nm, 20nm, 40nm, 80nm), farklı hacimsel oranlar (φ= %2, %4, %6, %8) ve farklı tiplerde hazırlanan nanoakışkanlar (CuO-Su, NiO-Su, Cu-Su, saf Su) için incelenmiştir. Çalışmada PHOENICS HAD programının düşük Reynolds sayılı k-ε türbülans modeli kullanılmıştır. Sonuç olarak; Re sayısının Re=12000-18000 değerine arttırılması sonucunda ortalama Nusselt sayısında %28 oranında bir artış olduğu belirlenmiştir. Nanoparçacıkların çap boyutu 80nm’den 10nm’ye azaltıldığında ortalama Nusselt sayısında %13,2 oranında bir artış olduğu tespit edilmiştir. Farklı hacimsel oranlarda hazırlanan naoakışkanlarda ise; hacimse oran %4 değerinden sonra arttırılsa dahi, ısı transferinde belirgin bir artışa sebep olmadığı belirlenmiştir. Farklı tiplerde hazırlanan nanoakışkanların kullanıldığı durumda en iyi ısı transferi performansı Cu-Su nanoakışkanı kullanıldığı durumda elde edilmiştir. Cu-Su nanoakışkanı saf su kullanıldığı duruma göre Nuort’da %8,3 oranında bir iyileştirme göstermiştir. Ayrıca; modellemede kullanılan düşük Reynolds sayılı k-ε türbülans modelinin sıcaklık dağılımını ve akış özelliklerini iyi şekilde temsil edebildiği görülmüştür. 

Anahtar kelimeler


Çarpan akışkan jet; nanoakışkan; ısı transferi; hesaplamalı akışkanlar dinamiği;

Tam metin:

PDF


Referanslar


Choi, S.U.S., Enhancing thermal conductivity of fluids with nanoparticles, ASME FED, 231, 99-105, 1995.

Sarkar, J., Ghosh, P., Adil, A., A review on hybrid nanofluids; resent research, development and applications, Renew. Sust. Energ. Rev., 43, 164-177, 2015.

Kasaeian, A., Eshghi, A.T., Sameti, M., A review on the applications of nanofluids in solar energy systems, Renew. Sust. Energ. Rev., 43, 584-598, 2015.

Suresh, S., Chandrasekar, S., Sekhar, C., Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube, Exp.Thermal Fluid Sci., 35, 542-549, 2011.

Assef, Y., Arab, D., Pourafshary, P., Application of nanofluid to control the fines migration to improve the performance of low salinity water flooding and alkaline flooding, J. Pet. Sci. Eng., 124, 331-340, 2014.

Selvakumar, P., Suresh, S., Convective performance of CuO/water nanofluid in an electronic heat sink, Exp., Thermal Fluid science, 40, 57-63, 2012.

Hadad, K., Rahimian, A., Nematollahi, M.R., Numerical study of single and two phase moldes of water/Al2O3 nanofluid turbulent force convestion flow in VVER-1000 nuclear reactor, Ann. Nucl. Energy, 60, 287-294, 2013.

Devdatta, P.K., Debendra, K.D., Ravikanth S.V., Application of nanofluids in heating building and reducing pollution, Applied Energy, 86, 2566-2573, 2009.

Ho, S.A., Hyungdae, K., Hanglin, J., Soon Ho, K., Wonpyo, C., Moo H.K., Experimental study of critical heat flux ebhancement during forced convective flow boiling of nanofluid on a short heated surface, Int.J. Multiphase flow, 36, 375-384, 2010.

Teamah, M.A., Dawood, M.M., Shehata, A., Numerical and experimental investigation of flow structure and behavior of Nanofluids flow impingement on horizontal flat plate, Experimental Thermal and Fluid Science, 74, 235-246, 2015.

Manca O., Ricci D., Nardini S., Lorenzo G., Thermal and fluid dynamics behaviours of confined laminar impinging slot jets with nanofluids, International Communications in Heat and Mass Transfer, 70,15-26, 2016.

Lv J., Chang S., Hu C., Bai M., Wang P., Zeng K. Experimental investigation of free single jet impingement using Al2O3 - water nanofluid. International Communications in Heat and Mass Transfer, 88, 126–135, 2017.

Khaleduzzaman, S.S., Sohel, M.R., Saidur, R., Mahbubul, I.M., Akash, B.A., Selvaraj, J., Energy and exergy analysis of alümina-water nanofluid for an electronic liquid cooling system, International Communication in Heat and Mass Transfer, 57, 118-127, 2014.

Modak M., Srinivasan S., Garg K., Chougule S.S., Agarwal M.K., Sahu S.K., Experimental investigation of heat transfer characteristics of the hot surface using Al2O3-water nanofluids, Chemical Engineering and Processing: Process Intensification, 91, 104–113, 2015.

Wang B.X., Zhou L.P., Peng X.F. Surface and size effects on the specific heat capacity of nanoparticles, International Journal of Thermophysics, 27(1), 139–151, 2006.

Sun B., Qu Y., Yang D., Heat transfer of single impinging jet with Cu nanofluids, Applied Thermal Engineering, 102, 701-707, 2016.

Umer A., Naveed S., Ramzan N., Experimental study of laminar forced convection heat transfer of deionized water based copper (I) oxide nanaofluids in tube with constant wall heat flux, Heat Mass Transfer, 52, 2015-2025, 2015.

Lv, J., Hu, C.,Bai, M., Zeng, K.,Chang, S., Gao, D., Experimental investigation of free single impingement using SiO2-water nanofluid, Experimental Thermal and Fluid Science,84, 39-46, 2017.

Singh, M., Yadav, D., Arpit S., Mitra S., Saha, S.K., Effect of nanofluid concentration and composition on laminer jet impinged cooling of heated steel plate, Applied Thermal engineering, 100, 237-246, 2016.

Kilic, M. ve Ozcan, O., Numerical investigation of heat transfer and fluid flow of nanofluids with impinging jets, International Conference On Advances and Innovations in Engineering (ICAIE), 434-440, 2017.

Nayak, S.K., Mishra, P.C., Parashar, S.K., Enhancement of heat transfer by water –Al2O3 and water-TiO2 nanofluids jet impingement in cooling hot surface steel surface, Journal of Experimental Nanoscience, 11, 1253-1273, 2016.

Alawi O.A., Azwadi N., Sidik C., Wei H., Hao T., Kazi S. N., Thermal conductivity and viscosity models of metallic oxides nanofluids, International Journal of Heat and Mass Transfer, 116, 1314–1325, 2018.

Yan, W.M., Liu, H.C., Soong, C.Y. ve Yang, W.J., Experimental study of impinging heat transfer along rib-roughened walls by using transient liquid crystal technique, Heat and Mass Transfer, 48, 2420-2428, 2005.

Kilic, M., Çalışır, T. ve Başkaya, Ş., Experimental and numerical study of heat transfer from a heated flat plate in a rectangular channel with an impinging Jet, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(1), 329-344, 2017.

McGuinn, A., Persoons, T., O’donovan T., Murray, D., Surface heat transfer from an impinging synthetic air jet, International Journal of Heat and Mass Transfer, 20, 1333-1338, 2007.

Lin Z.H., Chou Y.J., Hung Y.H., Heat transfer behaviors of a confined slot jet impingement, international journal of heat and mass transfer, 49, 2760-2780, 1996.

Isman, M. K., Pulat, E., Etemoglu, A. B., ve Can, M., Numerical investigation of turbulent impinging jet cooling of a constant heat flux surface, Numerical Heat Transfer, 53(10),1109-1132, 2008.

Dagtekin I., Oztop H., Heat transfer due to double laminar slot jets impingement onto an isothermal wall one side closed long duct, Int. Journal of Heat and Mass Transfer, 35, 65-75, 2007.

Kilic M., Başkaya Ş., Farklı geometride akış yönlendiriciler ve çarpan jet kullanarak yüksek ısı akılı bir yüzeyden olan ısı transferinin iyileştirilmesi, Journal of the Faculty of Engineering and Architecture of Gazi University, 32(3), 693-707, 10.17341/gazimmfd.337616, 2017.

Hremya C., Miller S., Mallo T., Sinclai, J., Comparison of low Reynolds number k-ε turbulence models in predicting heat transfer rates for pipe flow, Int. J. Heat Mass Transfer. Vol 41 (11), 1543-1547, 1998.

Pak, B. C., Cho, Y. I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer an International Journal, 11(2), 151–170,1998.

Corcione M., Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management, 52(1), 789–793, 2011.

Batchelor G. K., Effect of Brownian-Motion on bulk ttress in a suspension of spherical-particles. Journal of Fluid Mechanics, 83(1), 97–117, 1977.

Li Q., Xuan Y., Yu F., Experimental investigation of submerged single jet impingement using Cu-Water Nanofluid. Applied Thermal Engineering, 36(1), 426–433, 2012.

Wang, P., Lv, J., Bai, M., Wang, Y., Hu, C., A numerical investigation of impinging jets cooling with nanofluids, Nanoscale and Microscale Thermophysical Engineering, 18(4), 329-353, 2014.

Feng, Y., Kleinstreuer, C., Nanofluid convective heat transfer in a parelleldisk system, Int.J.Heat Mass Transfer, 53(4), 4619-4628, 2010.

Li, Y., Zhou J., Tung, S., Tung, S., Schneider, E., Xi, S., A review on development of nanofluid preperation and characterization, 196, 89-101, 2009.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.