Bir Üretim Hattında Çok Amaçlı Benzetim Optimizasyonu İçin Hibrit Yaklaşım

Önder Belgin
116 15

Öz


Firmalar günümüzün değişen pazar koşullarına adapte olabilmek için olabildiğince hızlı şekilde karar vermek ve değişimlere yanıt vermek durumundadır. Benzetim, bir üretim veya hizmet sisteminde meydana gelecek değişikliklerin etkilerinin sanal bir ortamda analiz edilebilmesini sağlayan güçlü bir araçtır. Fakat benzetim, sistemlerin optimize edilmesinde yeterli bir araç değildir ve benzetim ile optimizasyonun bütünleşik bir biçimde ele alınmasında ilave yöntemlere ihtiyaç vardır. Bu çalışmada, bir üretim sisteminin çok amaçlı optimizasyonu ele alınmıştır. Söz konusu üretim sisteminde firma yönetimi, dikkate alınan iş istasyonlarındaki çalışanlarının optimal kombinasyonunu elde etmeyi amaçlamaktadır. Çalışmada, sistemi ifade eden meta-modelin elde edilmesinde benzetim modelinden elde edilen sonuçlar kullanılmış ve ve iki farklı amacın tek bir değerde birleştirilmesinde ise gri ilişkisel analiz yönteminden yararlanılmıştır. Çalışmanın sonucunda belirli kısıtlar altında iş istasyonlarındaki işçilerin optimal kombinasyonu belirlenmiştir.


Anahtar kelimeler


Benzetim optimizasyonu, çok amaçlı benzetim optimizasyonu, gri ilişkisel analiz, deney tasarımı

Tam metin:

PDF


Referanslar


Ammeri, A., Hachicha, W., Chabchoub, H., Masmoudi, F. (2011). A comprehensive litterature review of monoobjective simulation optimization methods, Advances in Production Engineering & Management 6 (2011) 4, 291-302.

Fu, M. C. (2002). Optimization for simulation: theory vs. practice. Journal on Com- puting, 14 , 192–215 .

Lee, L.H., Chew, E.K., Teng, S., Chen, Y. (2008). Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem, European Journal of Operational Research, 189, 476-491.

Azadivar, F. (1999). Simulation optimization methodologies, Proceedings of the 1999 Winter Simulation Conference, 93-100.

Joines, J.A., Gupta, D., Gokce, M.A., King, R.E., Kay, M.G. (2002). Supply chain multi-objective simulation optimization, Proceedings of the 2002 Winter Simulation Conference, 1306-1314.

Eskandari, H., Rabelo, L., Mollaghasemi, M. (2005). Multiobjective simulation optimization using an enhanced genetic algorithm, Proceedings of the 2005 Winter Simulation Conference, 833-841.

Pasandideh, S.H.R., Niaki, S.T.A. (2006). Multi-response simulation optimization using genetic algorithm within desirability function framework, Applied Mathematics and Computation, 175, 366-382.

Avello, E.A., Baesler, F.F., Moraga, R.J., A meta-heuristic based on simulated annealing for solving multiple-objective problems in simulation optimization, Proceedings of the 2004 Winter Simulation Conference, 508-513.

Alrefaei, M.H., Diabat, A.H. (2009). A simulated annealing technique for multi-objective simulation optimization, Applied Mathematics and Computation, 215, 3029–3035.

Mattila, V., Virtanen, K. (2014). Maintenance scheduling of a fleet of fighter aircraft through multi-objective simulation-optimization, Simulation, 90:9, 1023-1040.

Yang, T., Kuo, Y., Chou, P. (2005). Solving a multiresponse simulation problem using a dual-response system and scatter search method, Simulation Modelling Practice and Theory, 13, 356-369

Willis, K.O., Jones, D.F. (2008). Multi-objective simulation optimization through search heuristics and relational database analysis, Decision Support Systems, 46, 277-286.

Zhang, H. (2008). Multi-objective simulation-optimization for earthmoving operations, Automation in Construction, 18, 79-86.

Saadatpour, M., Afshar, A. (2013). Multi objective simulation-optimization approach in pollution spill response management model in reservoirs, Water Resource Management, 27, 1851-1865.

Chen, T-L, Wang, C-C. (2016). Multi-objective simulation optimization for medical capacity allocation in emergency department, Journal of Simulation, 10, 50-68.

Syberfeldt, A., Ng, A., John, R.I., Moore, P. (2009). Multi-objective evolutionary simulation-optimisation of a real-world manufacturing problem, Robotics and Computer-Integrated Manufacturing, 25, 926-931.

Skardi, M.J.E., Afshar, A., Saadatpour, M., Solis, S.S. (2015). Hybrid ACO–ANN-based multi-objective simulation–optimization model for pollutant load control at basin scale, Environmental Modelling & Assessment, 20, 29-39.

Baesler, F.F., Sepúlveda, J.A. (2000). Multi-response simulation optimization using stochastic genetic search within a goal programming framework, Proceedings of the 2000 Winter Simulation Conference, 788-794.

Baesler, F.F., Sepúlveda, J.A. (2001). Multi-objective simulation optimization for a cancer treatment center, Proceedings of the 2001 Winter Simulation Conference, 1405-1411.

Lin, R-C.,Sir, M.Y., Pasupathy, K.S. (2013). Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services, Omega, 41, 881-892.

Yang, T., Chou, P. (2005). Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method, Mathematics and Computers in Simulation, 68, 9-21.

Kuo, Y.,Yang, T., Huang, G.W. (2008). The use of a grey-based Taguchi method for optimizing multi-response simulation problems, Engineering Optimization, 40:6, 517-528.

Belgin, O. (2015). Multi-objective simulation optimization using grey-based Taguchi method with fuzzy AHP weighting, Sigma Journal Engineering and Natural Sciences, 33:3, 341-350.

Ryu, J., Kim, S, Wan, H. (2009). Pareto front approximation with adaptive weighted sum method in multiobjective simulation optimization, Proceedings of the 2009 Winter Simulation Conference, 623-633.

Yang, T., Tseng, L. (2002). Solving a multi-objective simulation model using a hybrid response surface method and lexicographical goal programming approach—a case study on integrated circuit ink-marking machines, Journal of the Operational Research Society, 53, 211-221.

Zakerifar, M., Biles, W.E., Evans, G.W. (2009), Kriging metamodeling in multi-objective simulation optimization, Proceedings of the 2009 Winter Simulation Conference, 2115-2122.

Latha, B., Senthilkumar, V.S. (2009). Simulation optimization of process parameters in composite drilling process using multiobjective evolutionary algorithm, 2009 International Conference on Advances in Recent Technologies in Communication and Computing, 154-159.

Lee, L.H., Teng, S., Chew, E.K., Lye, K.W., Lendermann, P., Karimi, I.A., Chen, Y., Koh, C.H. (2005). Application of multi-objective simulation-optimization techniques to inventory management problems, Proceedings of the 2005 Winter Simulation Conference, 1684-1691.

Lee, L.H., Chew, E.K., Teng, S., Goldsman, D. (2004). Optimal computing budget allocation for multi-objective simulation models, Proceedings of the 2004 Winter Simulation Conference, 586-594.

Teng, S., Lee, L.H., Chew, E.P. (2007). Multi-objective ordinal optimization for simulation optimization problems, Automatica, 43, 1884-1895.

Barton, R.R., Meckesheimer, M. (2006). Metamodel-based simulation optimization, S.G. Henderson and B.L. Nelson (Eds.), Handbook in OR & MS, Vol. 13, Elsevier, 539.

Deng, J. L. Grey System Fundamental Method. Huazhong University of Science and Technology, Wuhan, China, 1982.

Kabak, M., Dagdeviren, M. (2017). A hybrid Approach Based on ANP and grey relational analysis for machine selection, Tehnički vjesnik 24, Suppl. 1(2017), 109-118.

Montgomory, D.C. (1997). Design and analysis of experiments, John Wiley & Sons, 290.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.