Deniz Dibi Tarama Malzemesi, Kömür Uçucu Külü ve Atık Döküm Kumunun Hafif Agrega Olarak Geri Kazanımı

Pembe ÖZER ERDOĞAN, HATİCE MERVE BAŞAR
307 61

Öz


Günümüzde, yüksek miktardaki deniz dibi tarama malzemesinin (DTM) diğer endüstriyel atıklarla birlikte sürdürülebilir çevresel yönetimi Türkiye genelinde ortak bir sorundur. DTM ve atıkların denize boşaltım/bertaraf yerine yapay hafif (kaba) agrega (YHA) üretiminde hammadde olarak faydalı kullanımı/geri kazanımı, döngüsel ekonomi kapsamında önemli çevresel kazanç sağlayacaktır. Bu çalışmada, DTM, kömür uçucu külü ve atık döküm kumu kullanılarak YHA üretimi araştırılmıştır. Hammaddelerin üç farklı karışımı pelletleme diskinde granüle edilmiş, 105ºC’de kurutulmuş ve kül fırınında 1100, 1150, 1170, 1180 ve 1190°C’de 5-10°C/min ısıtma hızı ve 10-20 min sinterleme süresinde sinterlenmiştir. Sinterlenen YHA’lar fiziksel, mekanik, mikroyapısal, mineralojik ve sızma özellikleri açısından analiz edilmiştir. 1190°C sinterleme sıcaklığı, 5°C/min ısıtma hızı ve 20 min sinterleme süresinde üretilen YHA’lar daha iyi agrega özelliklerine neden olmuştur. Ayrıca, bu agregaların sızma (liç) testi sonuçlarına göre; eluat ve original atık parametrelerinin, sinterleme prosesinde silika matriksine hapsolması nedeni ile, III. Sınıf (İnert Atık) düzenli depolama tesisi limit değerlerinin altında olduğu; böylece, yapı sektöründe kullanım için çevresel risk teşkil etmediği görülmüştür.  


Anahtar kelimeler


Faydalı kullanım; hafif agrega; dip tarama malzemesi; uçucu kül; atık döküm kumu

Tam metin:

PDF


Referanslar


Sheehan C., Harrington J., Management of dredge material in the Republic of Ireland - A review. Waste Management, 32, 1031–1044, 2012.

Yan D.Y.S., Tang I.Y., Lo I.M.C., Development of controlled low-strength material derived from beneficial reuse of bottom ash and sediment for green construction, Construction and Building Materials, 64, 201–207, 2014.

Türk Yönetmeliği, Atık Yönetimi Yönetmeliği, Resmi Gazete No: 29314, Çevre ve Şehircilik Bakanlığı, Ankara, Türkiye, 2015.

Yazıcı H., The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete, Construction and Building Materials, 22, 456–462, 2008.

Agostini F., Skoczylas F., Lafhaj Z., About a possible valorisation in cementitious materials of polluted sediments after treatment, Cement and Concrete Composites, 29, 270–278, 2007.

Molineux C.J., Newport D.J., Ayati B., Wang C., Connop S.P., Green J.E., Bauxite residue (red mud ) as a pulverised fuel ash substitute in the manufacture of lightweight aggregate, Journal of Cleaner Production, 112, 401–408, 2016.

Reddy M.S., Dinakar P., Rao B.H., A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete, Microporous Mesoporous Materials, 234, 12–23, 2016.

Choi S.J., Mun J.S., Yang K.H., Kim S.J., Compressive fatigue performance of fiber-reinforced lightweight concrete with high-volume supplementary cementitious materials, Cement and Concrete Composites, 73, 89–97, 2016.

Chang C.T., Hong G.B., Lin H.S., Artificial lightweight aggregate from different waste materials, Environmental Engineering Science, 33, 283–289, 2016.

Tan W., Lv J., Deng Q., Zhang X., Application of a combination of municipal solid waste incineration fly ash and lightweight aggregate in concrete, Journal of Adhesion Science and Technology, 4243, 1–12, 2015.

Mahmud H., Shafigh P., Jumaat M.Z., Structural lightweight aggregate concrete containing high volume waste materials, Key Engineering Materials, 594-595, 498–502, 2013.

Cheeseman C., Virdi G.S., Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash, Resources, Conservation and Recycling, 45, 18–30, 2005.

Nadesan M.S., Dinakar P., Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete, Case Studes in Construction Materials, 7, 336-347, 2017.

Domaga L., The effect of lightweight aggregate water absorption on the reduction of water-cement ratio in fresh concrete, Procedia Engineering, 108, 206–213, 2015.

Scheinherrová L., Trník A., Kulovaná T., Pavlík Z., Rahhal V., Irassar E.F., Hydration of blended cement pastes containing waste ceramic powder as a function of age. American Institute of Physics Conference Proceedings, 1752, 040025-1–040025-6. 2016.

Chang F.C., Lo S.L., Lee M.Y., Ko C.H., Lin J.D., Huang S.C., Leachability of metals from sludge-based artificial lightweight aggregate, Journal of Hazardous Materials, 146, 98–105, 2007.

Huang S.C., Chang F.C., Lo S.L., Lee M.Y., Wang C.F., Lin J.D., Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash, Journal of Hazardous Materials, 144, 52–58, 2007.

Tan W., Lv J., Deng Q., Zhang X., Application of a combination of municipal solid waste incineration fly ash and lightweight aggregate in concrete, Journal of Adhesion Science and Technology, 30, 866-877, 2016.

Wang H.Y., Durability of self-consolidating lightweight aggregate concrete using dredged silt, Construction and Building Materials, 23, 2332–2337, 2009.

Tang C.W., Chen H.J., Wang S.Y., Spaulding J., Production of synthetic lightweight aggregate using reservoir sediments for concrete and masonry. Cement and Concrete Composites, 33, 292–300, 2011.

Wei Y.L., Lin C.Y., Ko K.W., Wang H.P., Preparation of low water-sorption lightweight aggregates from harbor sediment added with waste glass, Marine Pollution Bulletin, 6, 135–140, 2011.

Liu, M., Liu X., Wang W., Guo J., Zhang L., Zhang H., Effect of SiO2 and Al2O3 on characteristics of lightweight aggregate made from sewage sludge and river sediment, Ceramics International, 44, 4313-4319, 2018.

Li B., Ling T.C., Qu L., Wang Y., Effects of a two-step heating process on the properties of lightweight aggregate prepared with sewage sludge and saline clay, Construction and Building Materials, 114, 119–126, 2016.

Tang C., Producing synthetic lightweight aggregates by treating waste TFT-LCD glass powder and reservoir sediments, Computers and Concrete, 13, 149–171, 2014.

Hwang C.L., Bui L.A.T., Lin K.L., Lo C.T., Manufacture and performance of lightweight aggregate from municipal solid waste incinerator fly ash and reservoir sediment for self-consolidating lightweight concrete. Cement and Concrete Composites, 34, 1159–1166, 2012.

Wei N., Leachability of heavy metals from lightweight aggregates made with sewage sludge and municipal solid waste incineration fly ash, International Journal of Environmental Research and Public Health, 12, 4992-5005, 2015.

Ozer-Erdogan P., Basar H.M., Erden I., Tolun L., Beneficial use of marine dredged materials as a fine aggregate in ready-mixed concrete: Turkey example, Construction and Building Materials, 124, 690–704, 2016.

Güzel B., Başar H.M., Güneş K., Yenisoy-Karakaş S., Karakaş D., Tolun L., Assessment of marine dredged materials taken from Turkey’s ports/harbors in landscaping, Desalination and Water Treatment, 71, 207–220, 2017.

Başar H.M., Güzel B., Özer-Erdoğan P., Tolun L., Türkiye'deki deniz dibi tarama malzemelerinin faydalı kullanım öncesi çevresel etkilerinin belirlenmesi: Ticari limanlar & balıkçı barınakları, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (4), 1063-1076, 2017.

Cevikbilen G., Teymur B., Karadogan U., Basar H.M., Dağlı S., Tolun L. An Investigation on Suitability of Dredge Materials on Road Construction, International Conference on Civil and Environmental Engineering (ICOCEE), Nevsehir, Turkey, May 20-23, 2015.

H.M. Başar, S. Dağlı, P. Özer Erdoğan, B. Güzel and L. Tolun (2015), Beneficial Use Alternatives for Dredged Materials: Landfill Daily Cover, International Conference on Civil and Environmental Engineering (ICOCEE), Nevsehir, Turkey, May 20-23, 2015.

G. Cevikbilen, B. Teymur, U. Karadogan, H. M. Basar, S. Dağlı, P. Özer-Erdoğan, B. Güzel, L. Tolun, Kaba Daneli Deniz Dibi Tarama Malzemelerinin Geoteknik Özelliklerinin Değerlendirilmesi, 6. Geoteknik Sempozyumu, Adana, Türkiye, 26-27 Kasım, 2015.

Demirel Y. ve Çağlar Y., Recovery of phosphogypsum waste in economy as building material, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (4), 743-750, 2015.

Özkan Ö., Properties of mortars containing waste bottle glass and blast furnace slag, Journal of the Faculty of Engineering and Architecture of Gazi University, 22 (1), 87-94, 2007.

Aruntaş, H.Y., The potential usage of fly ash in construction sector, Journal of the Faculty of Engineering and Architecture of Gazi University, 21 (1), 193-203, 2006.

Özüyağlı, A., Mehmetalioğlu, C., Özsoy, M., Akıncı, A., Investigation of mechanical properties of GFRP pipe production waste filled PVC matrix composites, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (2), 465-472, 2016.

Durmuş, G., Şimşek, O., Dayı, M., The effects of coarse recycled concrete aggregates on concrete properties, Journal of the Faculty of Engineering and Architecture of Gazi University, 24 (1), 183-189, 2009.

Duyuşen-Güven, E., Akıncı, G., Gök, G., Chemical fractionation and transfer of Cr, Cu, Zn and Ni in grass grown soil amended with tannery sludge compost, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 589-596, 2016.

Erten E., Yalçınkaya Ç., Beglarigale A., Yiğiter H., Yazıcı H., Erken yaş büzülme çatlaklarının lif içeren/içermeyen ultra yüksek performanslı betona gömülü donatı korozyonuna etkisi, Journal of the Faculty of Engineering and Architecture of Gazi University, 32(4), 1347-1364, 2017.

Uygunoğlu T., Güneş İ., Ersoy B., Evcin A., Kendiliğinden yerleşen polimerik harçlarda mineral katkının reolojik özeliklere etkisi, Journal of the Faculty of Engineering and Architecture of Gazi University 32(4) 1365-1377, 2017.

TÜBİTAK MAM, Deniz Dip Tarama Uygulamaları ve Dip Tarama Malzemesinin Çevresel Yönetimi (DİPTAR), Proje Sonuç Raporu, Proje No: 111G036, TÜBİTAK KAMAG 1007 Projesi, Kocaeli, Türkiye, 2016.

Türk Yönetmeliği, Atıkların Düzenli Depolanmasına Dair Yönetmelik, Resmi Gazete No: 27533, Çevre ve Şehircilik Bakanlığı, Ankara, Türkiye, 2010.

Riley C.M., Relation of chemical properties to the bloating of clays, Journal of American Ceramic Society, 34, 121–128, 1951.

Gualtieri F., Ferrari S., Kinetics of illite dehydroxylation, Physics and Chemistry of Minerals, 33, 490–501, 2006.

Meyvel S., Sathya P., Velraj G., Thermal characterization of archaeological pot sherds recently excavated in Nedunkur, Tamilnadu, India, Certamica, 58, 338–341, 2012.

De Araújo J.H., Da Silva N.F., Acchar W., Gomes U.U., Thermal decomposition of illite, Materials Research Bulletin, 7, 359–361, 2004.

Xu G.R., Zou J.L., Li G.B., Effect of sintering temperature on the characteristics of sludge ceramsite, Journal of Hazardous Materials, 150, 394–400, 2008.

Faria K.C.P., Holanda J.N.F., Thermal behavior of ceramic wall tile pastes bearing solid wastes, Journal of Thermal Analysis and Calorimetry, 123, 1119–1127, 2016.

Dabare L., Svinka R., Influence of thermal treatment and combustible additives on properties of Latvian clay ceramics pellets. Process and Application of Ceramics, 7, 175–180, 2013.

Bernhardt M., Justnes H., Tellesbø H., Wiik K., The effect of additives on the properties of lightweight aggregates produced from clay, Cement and Concrete Composites, 53, 233–238, 2014.

Li Y., Wu D., Zhang J., Chang L., Wu D., Measurement and statistics of single pellet mechanical strength of differently shaped catalysts. Powder Technology, 113, 176–184, 2000.

Yashima S., Kanda Y., National Z., Relationships Between Particle Size and Fracture Energy or Impact Velocity Required to Fracture as Estimated from Single Particle Crushing, Powder Technology, 51, 277–282, 1987.

Krishnamoorthy R.R., David T.K., Bin Mastor N.A., Nadarasa K., Repair of deteriorating pavement using recycle concrete materials, Procedia Engineering, 142, 371–382, 2016.

Chen H.J., Yang M.D., Tang C.W., Wang S.Y., Producing synthetic lightweight aggregates from reservoir sediments, Construction and Building Materials, 28, 387–394, 2012.

Liao Y.C., Huang C.Y., Chen Y.M., Lightweight aggregates from water reservoir sediment with added sodium hydroxide, Construction and Building Materials, 46, 79–85, 2013.

Wei Y.L., Yang J.C., Lin Y.Y., Chuang S.Y., Wang H.P., Recycling of harbor sediment as lightweight aggregate. Marine Pollution Bulletin, 57, 867–72, 2008.

Guo W.M., Vleugels J., Zhang G.J., Wang P.L., Van O., Effect of heating rate on densification, microstructure and strength of spark plasma sintered ZrB2-based ceramics, Scripta Materialia, 62, 802–805, 2010.

Fakhfakh E., Hajjaji W., Medhioub M., Rocha F., Lopez Galindo A., Setti M., Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks, Applied Clay Science, 35, 228–237, 2007.

Wei Y.L. and Lin Y.Y., Role of Fe compounds in light aggregate formation from a reservoir sediment, Journal of Hazardous Matierials, 171, 111–115, 2009.

Chen H.J., Wang S.Y., Tang C.W., Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate, Construction and Building Materials, 24, 46–55, 2010.

Yuan K., Wang F., Gao J., Sun X., Deng Z., Wang H., Effect of sintering time on the microstructure, flexural strength and translucency of lithium disilicate glass-ceramics, Journal of Noncrystalline Solids, 362, 7–13, 2013.

Niyazi U. ve Özturan T., Sinterleme sıcaklığının uçucu kül hafif agregaların özelliklerine etkisi, Ulusal Beton Kongresi, İstanbul-Türkiye, 133–144, 2005.

Cultrone G., Rodriguez-Navarro C., Sebastian E., Cazalla O., Torre M.J., Carbonate and silicate phase reactions during ceramic firing, Europian Journal of Mineralogy, 13, 621–634, 2001.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.