İki aşamalı tedarik zinciri koordinasyonunun bulanık talep altında analizi

Hülya Torun, Gülçin Canbulut
207 37

Öz


Çalışmada; bir tedarikçi ve bir perakendeciden oluşan iki aşamalı bir tedarik zinciri yapısı talep değişkeninin bulanık parametre olması durumunda incelenmiştir. Tedarik zinciri üyelerinin her birinin farklı hedefleri bulunmakta ve kendi performanslarını optimum yapmayı istemektedirler. Bu sebeple tedarik zinciri üyeleri arasındaki koordinasyonun sağlanması gerekmektedir. Bu koordinasyona göre tedarik zincirleri; merkezi ve merkezkaç tedarik zincirleri olarak değerlendirilmektedir. Çalışmada merkezi ve merkezkaç tedarik zinciri modelleri için talep parametresinin bulanık değişken olması şartıyla optimum sipariş miktarı ve tedarik zinciri üyeleri kar fonksiyonlarının genelleştirilmiş kapalı formlu çözümleri beklenen değer fonksiyonu ve güvenilirlik teorisi (credibility theory) kullanılarak elde edilmiştir. Ardından talep bulanıklığına ek olarak toptan satış fiyatının da bulanık değişken olması halinde merkezkaç tedarik zinciri modeli için tedarik zinciri üyeleri ve tedarik zinciri toplam karları elde edilmiştir. Son aşamada geliştirilen modeller sayısal değerler verilerek analiz edilmiştir.


Anahtar kelimeler


bulanık talep; tedarik zinciri; koordinasyon; optimizasyon; modelleme

Tam metin:

PDF


Referanslar


(1) Lee, H.L. and C. Billington (1992) “Managing Supply Chain Inventory, Pitfalls and Opportunities” Sloan eManagement Review, Vol.33 no.3, pp.65-73.

(2) Tan, K.C., Kannan, V.R., Handfield, R.B. (1198), “Supply Chain Management: Supplier Performance and Firm Performance”, International Journal of Purchasing and Material Management, Vol.34 No.3,pp.2-9.

(3) Harrison, T.P. (2003), “Principles for the strategic design of supply chains”, in: T.P. Harrison, H.L. Lee, J.J. Neale (Eds.), The Practice of Supply Chain Management: Where Theory and Application Converge, Kluwer Academic Publishing.

(4) Min, H., Zhou, G. (2002), “Supply chain modeling: past, present and future”, Comput. Ind. Eng. 43, 231–249.

(5) Yano, C.A., Gilbert, S.M. (2004), “Coordinated pricing and production/procurement decisions: a review”, in: A.K. Chakravarty, J. Eliashberg (Eds.), Managing Business Interfaces, Kluwer Academic Publishing,

(6) Cachon, G.P., (2003), “Supply chain coordination with contracts”. In: de Kok, A.G., Graves, S.C. (Eds.), Supply Chain Management: Design, Coordination and Operation, Handbooks in OR & MS, vol. 11. Elsevier, pp. 229–339.

(7) Sarathi, G., Sarmah, S., Jenamani, M. (2014)., “An integrated revenue sharing and quantity discounts contracts for coordinating a supply chain dealing with short-life cycle products”, Applied Mathematical Modelling, 38, pp. 4120-4136,

(8) Zadeh, L. A. (1978), “Fuzzy sets as a basis for a theory of possibility”, Fuzzy sets and systems, no. 1, pp. 3-28.

(9) L.A. Zadeh, “Toward a generalized theory of uncertainty-an outline”, Information Sciences, 172,pp. 1-40, 2005

(10) Sang, S. (2014), “Coordinating a Three Stage Supply Chain with Fuzzy Demand”, Engineering Letter, Vol.22:3.

(11) Sang, S. (2013), “Supply Chain Contracts with Multiple Retailers in a Fuzzy Demand Environment”,Hindawi Publishing Corporation Mathematical Problems in Engineering, http://dx.doi.org/10.1155/2013/482353.

(12) Zhang, B. , Lu,S. ,Zhang, D. ,Wen,K.(2014) , “Supply Chain Coordination Based on a Buyback Contract Under Fuzzy Random Variable Demand” , Fuzzy Sets and Systems, 255,pp.1-16.

(13) Ryu, K.,Yücesan, E. (2010) , “A Fuzzy Newsvendor Approach To Supply Chain Coordination” ,European Journal of Operational Research, 200, pp.421-438.

(14) Xu, R., Zhai, X.(2008) , “Optimal Models for Single-Period Supply Chain Problems with Fuzzy Demand”, Information Sciences, 178,pp.3374-3381.

(15) Xu, R., Zhai, X. (2010), “Analysis of Supply Chain Coordination Under Fuzzy Demand in a Two-Stage Supply Chain”, Applied Mathematical Modelling, 34, pp.129-139.

(16) De, S. K., Sana, S.S., "Two-layer supply chain model for Cauchy type Stochastic demand under fuzzy environment", International Journal of Intelligent Computing and Cybernetics, https://doi.org/10.1108/IJICC-10-2016-0037.

(17) Xue, F. , Tang, W., Zhao, R. (2008), “The expected value of a function of a fuzzy variable with a continuous membership function”, Computers and mathematics with applications, no. 55, pp. 1215-1224.

(18) Xu, Y., Hu, J. (2012), “Random Fuzzy Demand Newsboy Problem”, Physics Procedia, 25, 924 – 931.

(19) Dubois, D., Prade,H. (1980), “Fuzzy Sets and Systems: Theory and Applications”, Academic Press, New York.

(20) Dubois, D., Prade, H.(1988), “Possibility theory”, New York: Plenum.

(21) Liu, B., Liu, Y.-K. (2002), “Expected value of fuzzy variable and fuzzy expected value model”, IEEE transactions on fuzzy systems, no. 10, pp. 445-450.

(22) Heilpern, S. (1992), “The expected value of a fuzzy number”, Fuzzy sets and systems, no. 47, pp. 81-86.

(23) Yager, R. R. (1981), “A procedure for ordering fuzzy subsets of the unit interval”, Information sciences, cilt 2, no. 24, pp. 143-161.

(24) Campos, L., Gonzalez, A. (1989), “A subjective approach for ranking fuzzy numbers”, Fuzzy sets and systems, no. 29, pp. 145-153.

(25) Gonzalez, A. (1990), “A study of ranking function approach through mean values”, Fuzzy sets and systems, no. 35, pp. 29-41.

(26) Chen, S. H., Hsieh, C. H. (1999), “Graded mean integration representation of generalized fuzzy number”, Journal of Chinese Fuzzy systems, cilt 2, no. 5, pp. 1-7.

(27) Silver, E. A., Pyke D. F., Peterson, R. P. (1998), “Inventory management and production planning and scheduling”, New York,USA: John Wiley.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.