Inconel 718 süperalaşımının delinmesinde kriyojenik soğutmanın delme performansı üzerine etkilerinin araştırılması

Necati Uçak, Adem Çiçek
236 56

Öz


Bu çalışmada nikel bazlı bir süperalaşım olan Inconel 718’ in delinmesinde, kriyojenik soğutmanın delme performansına etkileri deneysel olarak araştırılmıştır. Delme deneyleri, kaplamasız ve TiAlN kaplamalı karbür matkaplar kullanılarak sabit bir kesme hızı (10 m/dk) ve ilerleme (0,02 mm/dev) ile kriyojenik, geleneksel kesme sıvısı ve kuru şartlar altında gerçekleştirilmiştir. Soğutma/yağlama şartlarının ve kaplama malzemesinin etkileri, eksenel kuvvet, tork, maksimum sıcaklık, çapak oluşumu, talaş oluşumu, yüzey altı deforme olmuş tabaka derinliği, mikrosertlik değişimi ve ortalama yüzey pürüzlülüğü değerleri açısından incelenmiştir. Kriyojenik soğutma, sıcaklık değerlerini önemli derecede düşürmüştür. Genel olarak kriyojenik şartlarda daha düşük yüzey altı deforme olmuş tabaka kalınlığı ve delik girişinde daha az çapak oluşumu elde edilmiştir. Ancak deney sonuçları kriyojenik soğutmanın eksenel kuvvet ve tork değerlerini arttırdığını ve hızlı takım aşınmasına sebep olduğunu göstermiştir. Buna bağlı olarak çıkış çapak yükseklikleri de artmıştır. İyi yüzey pürüzlülüğü değerleri ve düşük takım aşınması kesme sıvısı kullanımıyla elde edilmiştir.


Anahtar kelimeler


Inconel 718, kriyojenik delme, yüzey bütünlüğü, sıcaklık

Tam metin:

PDF


Referanslar


Oezkaya E., Beer N., Biermann D., Experimental studies and CFD simulation of the internal cooling conditions when drilling Inconel 718, Int. J. Mach. Tools Manuf., 108, 52-65, 2016.

Chen Y.C., Liao Y.S., Study on wear mechanisms in drilling of Inconel 718 superalloy, J. Mater. Process. Technol., 140 (1-3), 269-273, 2003.

Kubilay Aslantaş., Adem ÇİÇEK, Safiye Gülbin Çelik, An experimental study on relationship between tool wear-slot geometry in micromachining, Journal of the Faculty of Engineering and Architecture of Gazi University (2018), https://doi.or./10.17341/gazimmfd.416425.

Göv K., Experimental investigation of the effects of the coolant on the performance parameters of electrical discharge drilling of some aerospace materials, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 293-301, 2017.

Ezugwu E.O., Wang Z.M., Machado A.R., The machinability of nickel-based alloys: a review, J. Mater. Process. Technol., 86 (1-3), 1-16. 1999.

Sharman A.R.C., Amarasinghe A., Ridgway K., Tool life and surface integrity aspects when drilling and hole making in Inconel 718, J. Mater. Process. Technol., 200 (1-3), 424-32, 2008.

Dudzinski D., Devillez A., Moufki A., Larrouquere D., Zerrouki V., Vigneau J., A review of developments towards dry and high speed machining of Inconel 718 alloy, Int. J. Mach. Tools Manuf., 44 (4), 439-56, 2004.

Blau P., Busch K., Dix M., Hochmuth C., Stoll A., Wertheim R., Flushing strategies for high performance, efficient and environmentally friendly cutting, Procedia CIRP, 26, 361-366, 2015.

Groover M., Fundamentals of Modern Manufacturing Materials, Processes and Systems, John Wiley & Sons, New York, A.BD., 2010.

Grzesik W., Advanced Machining Processes of Metallic Materials: Theory, Modelling and Applications, Elsevier Science, Oxford, England, 2008.

Lopez De Lacalle L.N., Perez-Bilbatua J., Sanchez J.A., Llorente J.I., Gutierrez A., Alboniga J., Using high pressure coolant in the drilling and turning of low machinability alloys, Int. J. Adv. Manuf. Technol, 16 (2), 85-91., 2000.

Zeilmann R.P., Weingaertner W.L., Analysis of temperature during drilling of Ti6Al4V with minimal quantity of lubricant, J. Mater. Process. Technol., 179 (1-3), 124-127, 2006.

Perçin M., Aslantaş K., Ucun I, Kaynak Y., Çicek A., Micro-drilling of Ti-6Al-4V alloy: The effects of cooling/lubricating. Precis. Eng., 45, 450-462, 2016.

Armin Gharibi, Yusuf Kaynak, The influence of depth of cut on cryogenic machining performance of hardened steel, Journal of the Faculty of Engineering and Architecture of Gazi University (2018), https://doi.or./10.17341/gazimmfd.416423.

Shokrani A., Dhokia V., Newman S.T., Comparative investigation on using cryogenic machining in CNC milling of Ti-6Al-4V titanium alloy, Mach. Sci. Technol., 20 (3), 475-494, 2016.

Aramcharoen A., Influence of cryogenic cooling on tool wear and chip formation in turning of titanium alloy, Procedia CIRP,46, 83-86, 2016.

Ezugwu E.O., High speed machining of aero-engine alloys, J. Braz. Soc. Mech. Sci. Eng., 26 (1), 1-11,2004.

Kaynak Y., Lu T., Jawahir I.S., Cryogenic machining-induced surface integrity: A review and Comparison with dry, MQL, and flood-cooled machining. Mach. Sci. Technol., 18, 149-198, 2014.

Yildiz Y., Nalbant M., A review of cryogenic cooling in machining processes, Int. J. Mach. Tools Manuf., 48 (9), 947-964, 2008.

Ahmed L.S., Kumar M.P., Cryogenic drilling of Ti–6Al–4V alloy under liquid nitrogen cooling, Mater. Manuf. Processes, 31 (7), 951-959, 2016.

Biermann D., Hartmann H., Reduction of burr formation in drilling using cryogenic process cooling, Procedia CIRP, 3, 85-90, 2012.

Giasin K., Ayvar-Soberanis S., Hodzic A., The effects of minimum quantity lubrication and cryogenic liquid nitrogen cooling on drilled hole quality in GLARE fibre metal laminates, Mater. Des., 89, 996-1006, 2016.

Xia T., Kaynak Y., Arvin C., Jawahir I.S., Cryogenic cooling-induced process performance and surface integrity in drilling CFRP composite material., Int. J. Adv. Manuf. Technol., 82 (1-4), 605-616, 2016.

Aramcharoen A., Chuan S.K., An experimental investigation on cryogenic milling of inconel 718 and its sustainability assessment, Procedia CIRP, 14, 529-534, 2014.

Pusavec F., Hamdi H., Kopac J., Jawahir I.S., Surface integrity in cryogenic machining of nickel based alloy Inconel 718, J. Mater. Process. Technol., 211 (4), 773-783. 2011.

Uçak N, Çiçek A., The effects of cutting conditions on cutting temperature and hole quality in drilling of Inconel 718 using solid carbide drills, J. Manuf. Process., 31, 662-673, 2018.

Uçak N., The effects of cutting conditions on cutting temperature and hole quality in drilling of Inconel 718 using solid carbide drills, Yüksek Lisans Tezi, Ankara Yıldırım Beyazıt Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2017.

Hong S.Y., Ding Y., Jeong W., Friction and cutting forces in cryogenic machining of Ti-6Al-4V, Int. J. Mach. Tools Manuf., 41 (15), 2271-2285, 2001.

Stephenson D.A. ve Agapiou .JS., Metal Cutting Theory and Practice, CRP Press, Taylor & Francis Group, Boca Raton, A.B.D., 2016.

Outeiro J.C., Lenoir P., Bosselut A., Thermo-mechanical effects in drilling using metal working fluids and cryogenic cooling and their impact in tool performance. Prod. Eng., 9 (4), 551-562, 2015.

Thakur A., Gangopadhyay S., State-of-the-art in surface integrity in machining of nickel-based super alloys, Int. J. Mach. Tools Manuf., 100, 25-54, 2016.

Pervaiz S., Rashid A., Deiab I., Nicolescu M., Influence of tool materials on machinability of titanium- and nickel-based alloys: A review, Mater. Manuf. Processes, 29 (3), 219-252, 2014.

Zhou J.M., Bushlya V., Stahl J.E., An investigation of surface damage in the high speed turning of Inconel 718 with use of whisker reinforced ceramic tools, J. Mater. Process. Technol., 212 (2), 372-384, 2012.

Pu Z., Outeiro J.C., Batista A.C., Dillon O.W., Puleo D.A., Jawahir I.S., Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components, Int. J. Mach. Tools Manuf., 56, 17-27, 2012.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.