Güç Sistemlerinde Ünite Tahsisi için Döner Rezerv Gereksinimi Optimal Değerinin Kayıp Parametrelerin Dikkate Alınarak Hesaplanması

Mehmet Rıda TÜR, Selim Ay, Abdulfetah Shobole, Mohammed WADI
61 16

Öz


Döner Rezerv, üretim kesintileri ve ani yük değişimleri gibi öngörülemeyen olaylara yanıt olarak sistem operatörleri tarafından kullanılan en önemli kaynaklardan biridir. Kullanılacak rezervlerin miktarını yüksek tutarak doğabilecek beklenmedik durumların sebep olduğu üretim kesintilerine karşı güç sistemini korumak mümkün olur, bu işlem karşısında yük atma işleminin uygulanma olasılığı azalır, fakat bu durumda rezerv sağlama oldukça yüksek bir maliyet ile sonuçlanır. Maliyeti düşürmek amacıyla rezerv miktarını düşük tutma durumunda ise olası kesinti ve arıza durumlarında sağlanamayan bir enerji söz konusu olur ve tüketiciler enerjisiz kalabilir. Bu iki durumu dengeleyici şekilde bir ekonomik incelemeye gerek duyulmaktadır.  Geleneksel Ünite Tahsis formülasyonlarında, Döner Rezerv gereksinimini ayarlamak için en büyük çevrimiçi jeneratörün kapasitesi olarak belirleme yapan deterministik kriterler ile sabit bir rezerv miktarı benimsenir. Bu çalışmada, güç sisteminde tahsis edilmesi gerek Döner Rezerv gereksinimi, sağlanamayan enerji miktarı ve kayıp yük değeri gibi sosyo ekonomik parametreler dikkate alınarak elde edilir. Bu değer için fayda maliyet temeline dayalı bir yöntem ile hesaplama yapılmaktadır.


Anahtar kelimeler


döner rezerv; ünite tahsisi; primer frekans kontrolü; sekonder frekans kontrolü; yük atma

Tam metin:

PDF


Referanslar


Ortega, V. M. and Kirschen, S. D., (2009), “Estimating the spinning reserve requirements in systems with significant wind power generation penetration”. IEEE Trans Power Syst, 24:114–23.

Zakariazadeh, A., Jadid, S. and Siano, P., (2014), “Stochastic operational scheduling of smart distribution system considering wind generation and demand response programs.” Int J E Power Energy Syst, 63:218

Zakariazadeh, A. and Jadid, S., (2014), “Smart microgird operational planning considering multiple demand response programs” J Renew Sustain Energy, 6:013134.

Bouffard, F., Galiana, FD., Conejo, A.J., (2005) “Market-clearing with stochastic security–Part I: formulation”, IEEE Trans Power Syst, 20:1818–26.

Rebours, Y. and Kirschen, D. S., (2005), “A Survey of Sefinitions and Specifications of Reserve Services,” Release 1, University of Manchester, U. K.

Kariuki, K.K. and Allan, R.N., (1996), “Evaluation of Reliability Worth and Value of the Lost Load”, IEE Proc. On Gen., Trans. and Dis., vol. 141, no.2, pp. 171-180.

Ortega, V. M. and Kirschen S. D., (2009) “Estimating the spinning reserve requirements in systems with significant wind power generation penetration”, IEEE Trans Power Syst;24:114–23.

Bouffard, F. and Galiana, F. D. (2008), “Stochastic security for operations planning with significant wind power generation”, IEEE Trans Power Syst, 23:306–16.

Morales, J.M., Conejo, A. J. and Perez, R. J., (2009), “Economic valuation of reserves in power systems with high penetration of wind power”, IEEE Trans Power Syst, 24:900–10.

Gooi, H. B., Mendes, D.P., Bell, K.R.W. and Kirschen D.S., (1999), “Optimal Scheduling of Spinning Reserve”, IEEE Trans. on Power Sys., vol. 14, no.4, pp. 1485–1492.

Bouffard, F., Galiana, F.D. and Conejo, A.J., (2005), “Market-clearing with stochastic security- Part II: case studies”. IEEE Trans Power Syst, 20:1827–35.

Anstine, L.T., Burke, R.E., Casey, J.E., Holgate, R., John, R.S. and Stewart, H.G., (1963). “Application of probability metods to the determination of spinnig reserve requirements fort he Pennsylvania-New Jersey-Maryland interconnection”, IEEE trans. Power App. Syst., Pas-82, no.68, 720-735.

Mirzuzabad, M. F. and Amir M., (1996), “Spinning Reserve Allocation Using Response Health analysis”, IEE Proc. Gener. Transm. Distrib., Vol. 143, No. 4.

Bouffard, F. and Gah, F. D., (2004), “An Electricity Market with a Probabilistic Spinning Reserve Criterion”, IEEE Trans. on Power sys. vol. 19, pp. 300 -307.

Anstine, L. T., Burke, R. E., Casey, J. E., Holgate, R., John, R. S. and Stewart, H. G., (1963) “Application of probability methods to the determination of spinning reserve requirement for the Pennsylvania-New Jersey-Maryland interconnection,” IEEE Trans. Power App. Syst., vol. PAS-82, pp. 726–735.

Billinton, R. and Allan, R. N., (1996), “Reliability Evaluation of Power Systems”, 2nd ed. N. York: Plenum.

Simopoulos, D.N., Kavatza, S.D. and Vournas, C.D. (2006) “Reliability constrained unit commitment using simulated annealing”, IEEE Trans. Power Syst., 21, (4), pp. 1699–1706

Wang, J.X., Wang, X.F., Wu, Y. (2005), ‘Operating reserve model in the power market’, IEEE Trans. Power Syst., 20, (1), pp. 223–229.

Wu, L., Shahidehpour, M., Li, T. (2008), ‘Cost of reliability analysis based on stochastic unit commitment’, IEEE Trans. Power Syst., 23, (3), pp. 1364–1374.

Ortega-Vazquez, M.A., Kirschen, D.S., Pudjianto, D. (2006) ‘Optimising the scheduling of spinning reserve considering the cost of interruptions’, EE Proc., Gener. Transm. Distrib., 153, (5), pp. 570–575.

Wang, M.Q., Gooi, H.B. and Chen, S.X. (2010) “Optimising probabilistic spinning reserve using an analytical expected-energy-not-supplied formulation, Published in IET Generation, Transmission & Distribution, doi: 10.1049/iet-gtd.2010.0805

Tur, M. R., Ay, S., Wadi, M., Shobole, A., (2017) Obtaining Optimal Spinning Reserve and Unit Commitment Considering the Socio-Economic Parameters, ECRES – 5. European Conference on Renewable Energy Systems, Herzegovina, Bosnia

Wang, M. Q. and Gooi, H. B., (2011), “Spinning Reserve Estimation in Microgrids” IEEE Transactions on Power Systems, vol. 26, no.3.

Dillon, T. S., Edwin, K. W., Kochs, H.D., and Taud, R. J., (1978), “Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination,” IEEE Trans. Power App. Syst., vol. PAS-97, pp. 2154–2166.

Aminifar, F., Firuzzabad, M. F. and Shahidehpour, M., (2009), “Unit Commitment with Probalistic Spinning Reserve and Interruptible Load Considerations”, IEEE Transaction on Power Systems, vol:24-1.

Ferreira, L., Andersson, T., Imparato, C. F., Miller, T. E., Pang, C. K., Svoboda, A. And Vojdani, A. F., (1989), “Short-term resource scheduling in multiarea hydrothermal power systems”. Electrical Power & Energy Systems. vol:11-3.

Bertsekas, D. P., Lauer, G. S., Sandell Jr. N. R. and Posbergh T. A., “Optimal shortterm scheduling of large-scale power systems”, (1983), IEEE Trans Automatic Control, AC-28(1):1–11

Guan, X., Luh, P. B., Yen, H. and Rogan, P., (1992), “An optimization-based method for unit commitment. Electrical Power & Energy Systems 14(1):9– 17.

Chattopadhyay, D. and Baldick, R. (2002) “Unit commitment with probabilistic reserve,” in Proc. IEEE Power Eng. Soc. Winter Meeting, pp. 280–285.

Ortega, V. M. and Kirschen, S. D., (2007), “Optimizing the Spinning Reserve Requirements Using a Cost/Benefit Analysis”, IEEE Transactions On Power Systems, vol. 22-1.

Herbst, J. F. (2014) “Automatic Control in Power Generation, Distribution and Protection” International Federation of Automatic Control by Pergamon Press, Oxford.

Emmanuel J. T. and Evangelos N. D., (2004) “A Monte-Carlo Simulation Method for Setting the Underfrequency Load Shedding Relays and Selecting the Spinning Reserve Policy in Autonomous Power Systems” IEEE Transactions on Power Systems, Vol. 19-4.

Anders, G. J., “Probability Concepts in Electric Power Systems”, (1990), New York: Wiley.

Elaine K. H. and Mark Z. J., (2011), “A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables”, Renewable Energy vol:36, pp: 2278-2286.

Ross, S. M., “A Course in Simulation”, (1999), New York: Macmillan.

Prasanta, K. P. and Ghoshal, S. P., (2012), “Spinning Reserve Requirements Forecasting Using Local Linear Wavelet Neural Network in Wind Integrated Power System”, International Journal of Engineering Research & Technology (IJERT) vol. 1-6.

Manuel, A. M. and Bessa, R.J., (2011), “Setting the operating reserve using probabilistic wind power forecasts,” IEEE Trans. Power Syst., vol. 26-2, pp. 594-603

Banakar, H., Luo, C. and Ooi, B. T., (2008), “Impacts of wind power minute-to-minute variations on power system operation,” IEEE trans. Power systems, vol. 23-1. pp 150-160.

Samad, T. and Kiliccote, S., (2012) “Smart grid technologies and applications for the industrial sector,” Computers & Chemical Engineering, vol. 47, pp. 76 – 84.

Fabozzi, D., Thornhill, N., and Pal, B. (2013), “Frequency restoration reserve control scheme with participation of industrial loads,” in PowerTech.

Tur, M. R., Ay, S., Erduman, A., Shobole, A., Baysal, M., Wadi, M., (2017), Impact of Demand Side Management on Spinning Reserve Requirements Designation, Int J. of Renewable Energy Research vol.7-2.

Vujanic, R., Mariethoz, S., Goulart, P. and Morari, M., (2012), “Robust integer optimization and scheduling problems for large electricity consumers,” in American Control Conference (ACC), pp. 3108–3113.

Castro, P. M., Harjunkoski, I. and Grossmann, I. E., (2009), “New continuoustime scheduling formulation for continuous plants under variable electricity cost,” Industrial & engineering chemistry research, vol. 48-14, pp. 6701–6714.7

H. Pandˇzi´c, J. M. Morales, A. J. Conejo, and I. Kuzle, (2013) “Offering model for a virtual power plant based on stochastic programming,” Applied Energy, vol. 105, pp. 282–292.

X. Zhang, G. He, S. Lin, and W. Yang, (2011), “Economic dispatch considering volatile wind power generation with lower-semi-deviation risk measure,” in Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), pp. 140–144.

E. Aasgard, G. Andersen, S.E. Fleten, and D. Haugstvedt (2014), “Evaluating a stochastic-programming-based bidding model for a multireservoir system,” IEEE Transactions on Power Systems, no.99, pp. 1–10.

E. Saiz-Marin, J. Garcia-Gonzalez, J. Barquin, and E. Lobato, (2012), “Economic assessment of the participation of wind generation in the secondary regulation market,” IEEE Transactions on Power Systems, vol. 27-2, pp. 866–874.

E. Mashhour and S. M. Moghaddas-Tafreshi, (2011) “Bidding strategy of virtual power plant for participating in energy and spinning reserve markets part i: Problem formulation,” IEEE Transactions on Power Systems, vol. 26-2, pp. 949–956.

Endrenyi, J. (1978). Reliability Modeling in Electric Power Systems. John Wiley & Sons, New York, NY.

Benan, B. and Mehmet B., “Kısa dönem elektrik talep tahminleri için yapay sinir ağları ve uzman sistemler tabanlı hibrit sistem geliştirilmesi”, Journal of the Faculty of Engineering and Architecture of Gazi University 32:2 (2017) 575-583 10.17341/gazimmfd.322184

Hirst, E. and Kirby, B. (1998), “Unbundling Generation and Transmission Services for Competitive Electricity Markets: Ancillary Services”, NRRI-98-05, National Regulatory Research Institute, Col, OH

Wood, A. J. and Wollenberg, B. F. (1996), “Power Generation, Operation and Control”, 2nd ed. NY: Wiley.

Zhu, J., Jordan, G. and Ihara, S., (2000), “The market for spinning reserve and its impacts on energy prices”, proceedings of the IEEE Power Engineering Society Winter Meeting.

British Electricity International, (1991), “Modern power station practice: incorporating modern power system practice”, Pergamon.

TEİAŞ, (2004), “Elektrik Piyasası Yan Hizmetler Yönetmeliği, İkinci Bölüm, Yan Hizmetlerin Tedarik Edilmesine İlişkin Genel Esaslar. MYTM, Ankara.

NERC, (2016) “NERC Operating manual", Nort American Electric Reliability Corporation, Atlanta.

UCTE, (2004), “Union for the Co-Ordination of Transmission of Electricity Operation Handbook”, v 2.5E, the 20th of July 2004. B-1040 Brussels – Belgium.

Kirschen, D.S., (2002), “Power system security”, Power Eng. J., 16, 241-248

Kirschen, D.S., Bell, K.R.W., Nedic, D.P., Jayaweera, D. and Allah, R.N., (2003), “Computing the vaule of security”, Proc. Inst. Elect. Eng., Gener., Transm., Distrib., 150, 673-678.

Hüseyin Avni E, F. Yeşim K. and Coşkun H., “Yapay Sinir Ağları İle Türkiye Net Enerji Talep Tahmini” Journal of the Faculty of Engineering and Architecture of Gazi University Vol 29, No 3, 495-504, 2014

Wood, A. J. and Wollenberg, B. F. (1996), “Power Generation, Operation and Control”, 2nd ed. N.Y: Wiley.

Handbook, Operations UCTE. (2009) “P1ePolicy 1: load-frequency control and performance,” final version: v3.0. 2009. Available at: http://www.entsoe.eu. Brussels, Belgium.

Guide to Operating Reserve, (2008), “Marketplace training”, independent electricity system operator (IESO). 1 April 2008. Available at: www.IESO.ca. Toronto, Ontario.

Saez-Gallego, J., Morales, J.M., Madsen, H. And Jonsson, T., (2014), “Determining reserve requirements in DK1 area of Nord Pool using a probabilistic approach.”, Energy 2014;74:682e93.

Fotuhi-Firoozabad, M. and Rashidi-Nejad, M., (2014), “Allocation of spinning reserve among generating units using a hybrid deterministic/probabilistic approach” In: 2004 Large Engineering Systems Conference on Power Engineering (LESCOPE-04); 2004. p. 81e7. Halifax, NS, Canada, 28 e 30 July 2004.

Sheokand, A., Maheshwari, I. and Yadav, N.K., (2013), “Optimal spinning reserve capacity in power market. Int J Sci Res Dev 2013; 1:1447e51. 1 October 2013

Shahidehpour, S. M., Yamin, H. and Li, Z., (2002), “Market operations in electric power systems”, Forecasting, scheduling and risk management (1st ed.). USA: Wiley-IEEE Press.

Baldick, R. (1995), “The generalized unit commitment problem”, IEEE Trans. Power Syst., 10, 465-475.

Padhy, N.P., (2004), “Unit commitment–A bibliographical survey”, IEEE Trans, Power Syst., 19, 1196-1205.

Madrigal, M., and Quintana, V.H., (2000), “An analytical solition to the economic dispatch problem”, IEEE Power Engineering Review, 20, 52-55. 2000.

Lawton, L., M., Sullivan, K., Van Liere, A., Katx, P. And Eto, J. A framework and review of customer outage costs: integration and analysis of electric utility outage cost surveys, 2003. Available from World Wide Web: http://eetd.lbl.gov/EA/EMP/emp-pubsall.html

Sullivan, M.J., Vardell, T., Suddeth, B.N. and Vojdani, A. Interruption costs, customer satisfaction and expectations for service reliability, IEEE Trans. Power Syst., 11, 989-995, 1996.

Allan, R. N. VOLL- fact or fiction, Power Engineering Journal, 9,2-2. 1995.

Kariuki, K.K. and Allan, R. N. Evaluation of lost load, Proc. Inst. Elect. Eng., Gener., Transm., Distrib., 143, 171-180. 1997.

Reliability Test System Task Force, “The IEEE reliability test system—1996,” IEEE Trans. Power Syst., vol. 14, no. 3, pp. 1010–1020, Aug. 1999.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.