EKG verilerinin destek vektör regresyon yöntemiyle sıkıştırılması

Ömer Karal
474 87

Öz


Elektrokardiyogram (EKG), kalpteki kulakçık ve karıncıkların kasılma ve gevşeme evrelerinde oluşan elektriksel aktivitenin grafiksel bir gösterim şeklidir. Kalp hastalıklarının teşhisinde ve analizinde çok önemli bir role sahiptir. Kalp hastalıklarının önceden etkin bir şekilde tespiti ve teşhisi için, EKG sinyalleri sürekli kaydedilir. Bununla birlikte, uzun izleme dönemleri, EKG verilerinin depolanmasını ve iletimini zorlaştıracak şekilde büyük miktarda veri üretir. Dahası, bu kayıtlar çevre nedeniyle gürültüye maruz kalabilir. Bu nedenlerden dolayı, gürültülü bir ortamda bile etkin sonuçlar verebilecek bir EKG veri sıkıştırma algoritmasına ihtiyaç vardır. Bu çalışma, EKG sinyallerinin sıkıştırılması için Destek Vektör Regresyon (DVR) tabanlı yeni bir yöntem önerir. Dönüşüm tabanlı bir yöntem olan DVR, doğruluğu kanıtlanabilir bir algoritmaya dayandığı için, EKG verilerinin en uygun (optimal) bir biçimde sıkıştırılabilmesine imkan verir. Dönüşüm tabanlı yöntemlerde, dönüşümü sağlayan ve doğrusal olmayan taban fonksiyonlarının sayısını, şeklini ve yerini belirlemek çok önemlidir. Önerilen yöntem, DVR optimizasyon algoritması sayesinde söz konusu taban fonksiyonlarının sayısını, şeklini ve yerini hem en uygun hem de hızlı bir şekilde otomatik olarak belirler. Bilgisayar simülasyon sonuçları, önerilen tekniğin geçerliliğini ve uygulanabilirliğini göstermektedir.


Anahtar kelimeler


veri sıkıştırma; elektrokardiyogram; modelleme; destek vektör regresyon

Tam metin:

PDF


Referanslar


Jalaleddine, S. M., Hutchens, C. G., Strattan, R. D., Coberly, W. A.., ECG data compression techniques-a unified approach, IEEE Trans. Biomed. Eng., 37(4), 329-343, 1990.

Olmos, S., MillAn, M., Garcia, J., Laguna, P., ECG data compression with the Karhunen-Loeve transform, Computers in Cardiology, Indianapolis, ABD, 253-256, 8-11 Eylül, 1996.

Reddy, B. S., Murthy, I. S. N., ECG data compression using Fourier descriptors, IEEE Trans. Biomed. Eng., (4), 428-434, 1986.

Singh, B., Kaur, A., Singh, J. A review of ecg data compression techniques. International journal of computer applications, 116(11), 2015.

Benzid, R., Messaoudi, A., Boussaad, A., Constrained ECG compression algorithm using the block-based discrete cosine transform, Digital Signal Process.,18(1), 56-64, 2008

Shinde, A. A., Kanjalkar, P., The comparison of different transform based methods for ECG data compression, Uluslararası konferans, ICSCCN-IEEE, Thuckafay, Hindistan, 332-335, 21-22 Haziran, 2011.

Manikandan, M. S., Dandapat, S., Wavelet-based electrocardiogram signal compression methods and their performances: a prospective review, Biomed. Signal Process. Control, 14, 73-107, 2014.

Addison, P. S., Wavelet transforms and the ECG: a review, Physiol. Meas., 26(5), R155, 2005.

Abo-Zahhad, M., Ahmed, S. M., Sabor, N., Al-Ajlouni, A. F., Wavelet Threshold Based ECG Data Compression Technique Using Immune Optimization Algorithm, IJSIP 8(2), 307-360, 2 Şubat, 2015.

Swarnkar, A., Kumar, R., Kumar, A., Khanna, P. (2017, February). Performance of different threshold function for ECG compression using Slantlet transform. Uluslararsı 4. Sinyal İşleme ve Bütünleşik Ağlar konferansı (SPIN), 375-379, 2-3 Şubat, 2017.

Ballesteros, D. M., Moreno, D. M., Gaona, A. E., FPGA compression of ECG signals by using modified convolution scheme of the Discrete Wavelet Transform, Ingeniare, Revista chilena de ingeniería, 20(1), 2012.

Al-Busaidi, A. M., Khriji, L., Touati, F., Rasid, M. F. A., Mnaouer, A. B. (2015, February). Real-time DWT-based compression for wearable Electrocardiogram monitoring system. Uluslararası 8. GCC konferans ve sergisi, (GCCC), 1-6, Muscat, Umman, 1-4 Şubat, 2015.

Huang, B., Wang, Y., Chen, J., ECG compression using the context modeling arithmetic coding with dynamic learning vector–scalar quantization, Biomed. Signal Process. Control 8(1), 59-65, 2013.

Hung, K. C., Wu, T. C., Lee, H. W., Liu, T. K., EP-based wavelet coefficient quantization for linear distortion ECG data compression, Med. Eng. Phys., 36(7), 809-821, 2014.

Ramakrishnan, A. G., Saha, S., ECG coding by wavelet-based linear prediction, IEEE Trans. Biomed. Eng., 44(12), 1253-1261, 1997.

Al-Shrouf, A., Abo-Zahhad, M., & Ahmed, S. M., A novel compression algorithm for electrocardiogram signals based on the linear prediction of the wavelet coefficients, Digital Signal Process., 13(4), 604-622, 2003.

Basak, D., Pal, S., Patranabis, D. C., Support vector regression, Neural Inf. Process. Lett. Rev., 11(10), 203-224, 2007.

Osowski, S., Hoai, L. T., Markiewicz, T. Support vector machine-based expert system for reliable heartbeat recognition. IEEE trans. Biomed. Eng., 51(4), 582-589, 2004.

Szilágyi, S. M., Szilágyi, L., Benyó, Z. Support Vector Machine-Based ECG Compression. In Analysis and Design of Intelligent Systems using Soft Comput. Tec., 737-745, Springer Berlin Heidelberg, 2007.

Acır, N., A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems. Expert Syst. Appl., 31(1), 150-158, 2006.

Mehta, S. S., Lingayat, N. S., Detection of QRS complexes in electrocardiogram using support vector machine. J. Med. Eng. Technol., 32(3), 206-215. 2008.

Zidelmal, Z., Amirou, A., Belouchrani, A., Heartbeat classification using support vector machines (SVMs) with an embedded reject option. Int. J. Pattern Recognit Artif Intell., 26(01), 1250001, 2012.

Huber, M. B., Lancianese, S. L., Nagarajan, M. B., Ikpot, I. Z., Lerner, A. L., Wismuller, A., Prediction of biomechanical properties of trabecular bone in MR images with geometric features and support vector regression. IEEE Trans. Biomed. Eng., 58(6), 1820-1826, 2011.

Mahmoodian, H., Ebrahimian, L., Using support vector regression in gene selection and fuzzy rule generation for relapse time prediction of breast cancer. Biocybern. and Biomed. Eng., 36(3), 466-472, 2016.

Ramedani, Z., Omid, M., Keyhani, A., Shamshirband, S., Khoshnevisan, B., Potential of radial basis function based support vector regression for global solar radiation prediction. Renewable Sustainable Energy Rev., 39, 1005-1011, 2014.

Hu, Q., Zhang, S., Yu, M., Xie, Z., Short-term wind speed or power forecasting with heteroscedastic support vector regression. IEEE Trans. Sustainable Energy, 7(1), 241-249, 2016.

Camps-Valls, G., Bruzzone, L., Rojo-Álvarez, J. L., Melgani, F., Robust support vector regression for biophysical variable estimation from remotely sensed images. IEEE Geosci. Remote Sens. Lett., 3(3), 339-343, 2006.

Okujeni, A., Van Der Linden, S., Tits, L., Somers, B., Hostert, P., Support vector regression and synthetically mixed training data for quantifying urban land cover. Remote Sens. Environ., 137, 184-197, 2013.

Cortes, C., Vapnik, V., Support-vector networks, Mach. Learn., 20(3), 273-297, 1995.

Smola, A. J., Schölkopf, B., A tutorial on support vector regression, Stat. Comput., 14(3), 199-222, 2004.

Karal, O., Maximum likelihood optimal and robust Support Vector Regression with lncosh loss function. Neural Networks, 94, 1-12, 2017.

Fletcher, R., Practical methods of optimization. John Wiley & Sons, 2013.

Schölkopf, B., Smola, A. J., Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press,, 2002.

Bertsekas, D. P., Nonlinear programming, Belmont: Athena scientific., 1999.

Hilton, M.L., Wavelet and wavelet packet compression of electrocardiograms,IEEE Trans. Biomed. Eng. 44 (5), 394–402, 1997.

Miaou, S. G., Lin, C. L., A quality-on-demand algorithm for wavelet-based com-pression of electrocardiogram signals, IEEE Trans. Biomed. Eng. 49 (3), 233–239, 2002.

Hwang, W.J., Chine, C.F., Li, K.J., Scalable medical data compression and trans-mission using wavelet transform for telemedicine applications, IEEE Trans.Inf. Technol. Biomed. 7 (1), 54–63, 2003.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.