karbon fiber takviyeli polimer kompozitlerin ergiyik biriktirme yöntemi ile eklemeli imalatı: fiber oranı ve yazdırma parametrelerinin mekanik özelliklere etkisi

Hüseyin Kürşad Sezer, Oğulcan Eren, Hüseyin Rıza Börklü, Veysel Özdemir
632 123

Öz


Son yıllarda bir çok farklı alanda kullanılan Eklemeli İmalat (Eİ) teknolojisi ile geleneksel yöntemlere kıyasla kompleks formdaki 3B parçaların daha kolay, düşük maliyetli ve hızlı üretimi mümkündür. Eİ teknolojileri arasında en popüler ve ucuz yöntem Ergiyik Biriktirme Yöntemidir (Fused Deposition Modeling - FDM). Son yıllarda, bu teknoloji ile son kullanıma hazır parçaların doğrudan imalatına ilgi artmıştır. Ancak FDM baskılı parçaların düşük mekanik özellikleri, bu kapsamda yaygın biçimde uygulanmasını önleyen temel bir problemdir. Eklemeli imalatın; nihai parça imalatında yaygın olarak uygulanması için, mevcut tekniklerde ve malzemelerde, yük taşıyan bileşenlere ait mekanik gereksinimleri karşılayacak düzeyde bir iyileştirilme yapılması gerekmektedir. Bu çalışmada, 6 mm uzunluğunda karbon elyaf takviyeli akrilonitril-butadien-stiren (ABS) kompozit filamentlerin üretimi ve FDM 3B baskısının fizibilitesi ilk kez yayınlanmaktadır. Bu çalışma ile 6 mm uzunluğunda karbon elyaf takviyesi ile parça mukavemetinin önemli ölçüde iyileştirilebileceğine karşın; esneklik ve işlenebilirliğin artan takviye içeriği ile azaldığı bulguları not edilmiştir. Ayrıca yazdırma deseninin mekanik özellikleri önemli derecede etkilediği saptanmıştır.


Anahtar kelimeler


Hızlı prototipleme; 3B baskı; Kompozit filament; Karbon fiber takviyeli polimer (CFRP)

Tam metin:

PDF


Referanslar


ASTM F2792e12a, Standard terminology for additive manufacturing technologies, West Conshohocken: ASTM International, 2012.

Sood A.K., Ohdar R.K., Mahapatra S.S., Parametric appraisal of mechanical property of fused deposition modelling processed parts, Material Design 31, 287-295, 2010.

Yakovlev A., Trunova E., Grevey D., Pilloz M., Smurov I., Laser-assisted direct manufacturing of functionally graded 3D objects, Surface Coatings Technology 190 (1), 15-24, 2005.

Williams J.V., Revington R.J., Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture, International Journal of Oral Maxillofacial Surgery 39, 182–184, 2010.

Vilaro T., Abed S., Knapp W., Direct manufacturing of technical parts using selective laser melting: example of automotive application, Proceedings of 12th European Forum on Rapid Prototyping; 2008.

Webb P.A., A review of rapid prototyping (RP) techniques in the medical and biomedical sector, Journal of Medical Engineering & Technology (J. Med. Eng. Technol.) 24 (4), 149-153, 2000.

Rengier F., Mehndiratta A., Tengg-Kobligk H., Zechmann CM., Unterhinninghofen R., Kauczor U., Giesel F.L., 3D printing based on imaging data: review of medical applications, International Journal of Computer Assited Radiology and Surgery, 5, 335-341, 2010.

Kolarevic B., Digital fabrication: manufacturing architecture in the information age, Proceedings of Association for Computer Aided Design in Architecture, 268-277, 2001.

Flowers J. 3D laser scanning in technology education, Technology Teaching, 60 (3), 27-30, 2000.

Brandt J., Drechsler K., Arendts F.J., Mechanical performance of composite based on various three dimensional woven-fibre preforms, Composites Science and Technology (Compos. Sci. Technol.), 56, 381-386, 1996.

Dudek P., FDM 3D printing technology in manufacturing composite elements, Archives of Metallurgy and Materials (Arch. Metall. Mater.), 58 (4), 1415-1418, 2013.

Cooke M.N., Fisher J.P., Dean D., Rimnac C., Mikos A.G., Use of stereolithography to manufacture critical sized 3D biodegradable scaffolds for bone ingrowth, Journal of Biomedical Materials Research Part A (J. Biomed. Mater. Res. Part B), 64 (B), 65-69, 2002.

Kruth J.P., Wang X., Laoui T., Froyen L., Lasers and materials in selective laser sintering, Assembly Automation, 23 (4), 357-371, 2003.

Park J, Tari MJ, Hahn HT. Characterization of the laminated object manufacturing (LOM) process, Rapid Prototyping Journal, 6 (1), 36-50, 2000.

Kai C.C., Fai L.K., Chu-Sing L., Rapid prototyping: principles and applications in manufacturing, 2nd ed. Singapore: World Scientific Publishing; 2003.

Wong K.V., Hernandez A., A review of additive manufacturing. International Scholarly Research Network, Article ID: 208760, 2012.

Chakraborty D., Reddy A.B., Choudhury, R.A., Extruder path generation for Curved Layer Fused Deposition Modeling, Compuer Aided Desing, 40, 235-243, 2008

Comb, J.W., Priedeman W.R., Leavit P.J., Skubic R.L., Batchelder J.S., High-precision modeling filament, patent, 2005.

Marcincinova L.N., Marcincin J.N., Barna J., Torok J., Special materials used in FDM rapid prototyping technology application, Proceedings of IEEE 16th International Conference on Intelligent Engineering Systems (INES), Lisbon, 73-76, 2012.

Tekinalp H.L., Kunc V., Velez-Garcia G.M., Duty C.E., Love L.J., Naskar A.K., Highly oriented carbon fiber-polymer composites via additive manufacturing. Composite Science Technology, 105 (10), 144-150, 2014.

Shofner M.L., Lozano K., Rodríguez-Macías F.J., Barrera E.V., Nanofiber-reinforced polymers prepared by fused deposition modeling, Journal of Applied Polymer Science (J. Appl. Polym. Sci.), 89 (11), 3081-3090, 2003.

Karsli N.G., Aytac A., Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composite, Composites Part B, 61, 270–275, 2013.

Bijsterbosch H., Gaymans R.J., Polyamide 6-long glass fiber injection moldings, Polymer Composite, 16, 363–369, 1995.

Denault J., Vu-Khanh T., Foster B., Tensile properties of injection molded long fiber thermoplastic composites, Polymer Composite, 10, 313–321, 1989.

Fu S.Y., Hu X., Yue C.Y., Effects of fiber length and orientation distributions on the mechanical properties of short fiber reinforced polymers- a review, Materials Science Research International (Mater. Sci. Res. Int. ), 5, 74–83, 1999.

Ramsteiner F., Theysohn R., Tensile and impact strengths of unidirectional, short fiber-reinforced thermoplastics, Composites, 10, 111–119, 1979.

Botelho E.C., Figiel L., Rezende M.C., Lauke B., Mechanical behavior of carbon fiber reinforced polyamide composites, Composites Science Technology, 63, 1843–1855, 2003.

Li J., Zhang YF., The tensile properties of HNO3-treated carbon fiber reinforced ABS/PA6 composites, Surface and Interface Analysis (Surf. Interface Anal.), 41, 610–614, 2009.

Li J., Cai CL., The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites, Current Applied Physics (Curr. Appl Phys.), 11, 50–54, 2011.

Fu S.Y., Lauke B., Mader E., Yue C.Y., Hu X., Tensile properties of short glass fiber and short carbon fiber reinforced polypropylene composites, Composites Part A, 31, 1117–1125, 2000.

Zhong W., Li F., Zhang Z., Song L., Li Z., Short fiber reinforced composites for fused deposition modeling, Materials Science Engineering, 301, 25–30, 2001.

Ning F., Cong W., Qiu J., Wei J., Wang S., Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Composites Part B 80, 369-378, 2015.

Ning F., Cong W., Hu Y., Wang H., Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties, Journal of Composite Materials 0(0), 1-12, 2016.

Tezcan J., Ozcan S., Gurung B., Filip P., Measurement and analytical validation of interfacial bond strength of PAN fiber reinforced carbon matrix composites, Journal of Material Science, 43(5), 1612–1628, 2008.

Tang L.G., Kardos J.L., A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix, Poymer Composites, 18(1), 100-113, 1997.

Li J., Zhang Y.F., The tensile properties of short carbon fiber reinforced ABS and ABS/PA6 composites, Journal of Reinforced Plastics and Composites (J. Reinf. Plast. Compos.), 29 (11), 1727–33, 2010.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.