Zaman gecikmeli mikro-şebeke sistemlerin Rekasius yerine koyma yöntemiyle kazanç ve faz payı tabanlı kararlılık analizi

Hakan Gündüz, Saffet Ayasun, Şahin Sönmez
531 56

Öz


Bu makale, sadece kararlıklık değil aynı zamanda kazanç ve faz payını dikkate alarak, sabit haberleşme gecikmesi içeren bir mikro-şebeke sistemin gecikmeye bağlı kararlılığını araştırmaktadır. Sistemin maksimum zaman gecikmesi hesabında kazanç ve faz payını dikkate alabilmek için mikro-şebeke sisteme sanal bir kazanç-faz payı testedici ilave edilmiştir. Frekans düzleminde geçerli olan analitik Rekasius yerine koyma yöntemi kazanç ve faz payı tabanlı maksimum zaman gecikmelerini hesaplamak için kullanılmıştır. Bu yöntem, verilen bir pozitif zaman gecikmesi için, mikro-şebekenin karateristik denklemine ait sanal eksen üzerinde bulunan tüm kökleri hesaplamaktadır. Bu yaklaşım ilk olarak, mikro-şebekenin üstel terim içeren karateristik denklemini sıradan bir polinoma dönüştürmektedir. Daha sonra, sanal eksen üzerindeki kökleri ve maksimum zaman gecikmesini hesaplamak için Routh-Hurwitz yöntemi uygulanmıştır. Oransal-integral denetliyicinin ve kazanç-faz payının farklı değerleri için mikro-şebekenin hem kararlı olacağı hem de istenilen kazanç-faz payına sahip olacağı maksimum zaman gecikme değerleri hesaplanmıştır. Kompleks köklerin ve maksimum zaman gecikme değerlerinin doğruluğu, üstel terim içeren polinomların köklerini hesaplamak için geliştirilen (the quasi-polynomial mapping-based root finder) QPmR algoritması ve zaman düzleminde gerçekleştirilen benzetim çalışmaları ile gösterilmiştir. Benzetim çalışmaları; salınımların hızlı sönümlenmesi, daha az maksimum aşma ve daha kısa yerleşme zamanı açısından sistemin daha iyi bir dinamik performansa sahip olabilmesi için, maksimum zaman gecikmelerinin kazanç-faz paylarını dikkate alarak hesaplanmasının gerekli olduğunu göstermiştir.


Anahtar kelimeler


Haberleşme zaman gecikmesi; Kararlılık; Kazanç ve faz payı; Mikro-şebeke; QPmR algoritması; Rekasius yöntemi;

Tam metin:

PDF


Referanslar


Hatziargyriou N., Microgrids: architecture and control, Wiley-IEEE Press, 2014.

Zamora R.A., Srivastava K., Controls for micro-grids with storage: review, challenges, and research needs, Renew. Sustain. Energy Rev., 14 (7), 2009–2018, 2010.

Kundur P., Power system stability and control, McGraw-Hill, 1994.

Bevrani H., Ghosh A., Ledwich G., Renewable energy sources and frequency regulation: survey and new perspectives, IET Renew. Power Gener., 4 (5), 438–457, 2010.

Vandoorn T.L., Kooning J.D.M.D., Meersman B., Vandevelde L., Communication-based secondary control in microgrids with voltage-based droop control, Proc. IEEE PES Transmission and Distribution Conf. and Exposition, Orlando, FL, US, 1–6, 07–10 May 2012.

Li X., Song Y., Han S., Frequency control in micro-grid power system combined with electrolyzer system and fuzzy PI controller, J. Power Sources, 180 (1), 468–475, 2008.

Nayeripour M., Hoseintabar M., Niknam T., Frequency deviation control by coordination control of FC and double-layer capacitor in an autonomous hybrid renewable energy power generation system, Renew. Energy, 36, 1741–1746, 2011.

Kumar B., Mishra S., AGC for distributed generation, Proc. IEEE Int. Conf. on Sustainable Energy Technologies (ICSET), Singapore, 89–94, 24–27 November 2008.

Kaur A., Kaushal J., Basak P., A review on microgrid central controller, Renew. Sustain. Energy Rev., 55, 338–345, 2016.

Macana C.A., Mojica-Nava E., Quijano N., Time-delay effect on load frequency control for micro-grids, Proc. 10th IEEE Int. Conf. on Networking Sensing and Control (ICNSC), Evry, France, 544–549, April 2013.

Rekasius Z.V., A stability test for systems with delays, Proc. Joint Automatic Control Conf., San Francisco, CA, US, 13–15, August 1980.

Olgac N., Sipahi R., An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems, IEEE Trans. Autom. Control, 47 (5), 793–797, 2002.

Walton, K.E., Marshall, J.E., Direct method for TDS stability analysis. IEE Proceeding Part D, 134 (2), 101–107, 1987.

Sönmez, Ş., Ayasun, S., Nwankpa, C.O., An exact method for computing delay margin for stability of load frequency control systems with constant communication delays. IEEE Trans. Power Syst., 31 (1), 370-377, 2016.

Gündüz H., Sönmez Ş., Ayasun S., Comprehensive gain and phase margins based stability analysis of micro-grid frequency control system with constant communication delays. IET Gen. Trans. And Distri, 11 (3), 719-729, 2017.

Chang C.H., Han K.W., Gain margins and phase margins for control systems with adjustable parameters, J. Guid. Control Dyn., 13 (3), 404–408, 1990.

He Y., Wang Q.G., Xie L.H., Lin C., Further improvement of free-weighting matrices technique for systems with time-varying delay, IEEE Trans. Autom. Control, 52 (2), 293–299, 2007.

Wu M., He Y., She J.H., Liu G.P., Delay-dependent criterion for robust stability of time-varying delay systems, Automatica, 40 (8), 1435–1439, 2004.

Xu S.Y., Lam J., On equivalence and efficiency of certain stability criteria for time-delay systems, IEEE Trans. Autom. Control, 52 (1), 95–101, 2007.

Yao W., Jiang L., Wu Q.H., Wen J.Y., Cheng S.J., Delay-dependent stability analysis of the power system with a wide-area damping controller embedded, IEEE Trans. Power Syst., 26 (1), 233–240, 2011.

Yao W., Jiang L., Wen J.Y., Wu Q.H., Cheng S.J., Wide-area damping controller of FACTS devices for inter-area oscillations considering communication time delays, IEEE Trans. Power Syst., 29 (1), 318–329, 2014.

Jiang L., Yao W., Wu Q.H., Wen J.Y., Cheng S.J., Delay-dependent stability for load frequency control with constant and time-varying delays, IEEE Trans. Power Syst., 27 (2), 932–941, 2012.

Zhang C.K., Jiang L., Wu Q.H., He Y., Wu M., Further results on delay-dependent stability of multi-area load frequency control, IEEE Trans. Power Syst., 28 (4), 4465–4474, 2013.

Vyhlídal, T., Zítek, P., Mapping based algorithm for large-scale computation of quasi-polynomial zeros IEEE Trans. Autom. Control, 2054 (1), 171-177, 2009.

Vyhlídal, T., Olgaç, N., Kučera, V., Delayed resonator with acceleration feedback – Complete stability analysis by spectral methods and vibration absorber design. Journal of Sound and Vibration, 333 (25), 6781–6795, 2014.

Kammer, A.S., Olgaç, N., Delayed-feedback vibration absorbers to enhance energy harvesting. Journal of Sound and Vibration, 363 (17), 54–67, 2016

Ilic M.D., Xie L., Khan U.A, Moura J.M.F., Modelling of future cyber physical energy systems for distributed sensing and control, IEEE Trans. Syst. Man Cybern. A Syst. Humans, 40, 825–838, 2010.

Matsubara M., Fujita G., Shinji T., Sekine T., Akisawa A., Kashiwagi T., Yokoyama R., Supply and demand control of dispersed type power sources in micro grid, Proc. 13th Int. Conf. on, Intelligent Systems Application to Power Systems (ISAP), Arlington, VA, US, 67–72, 6–10 November 2005.

Simulink, Model-based and system-based design using simulink, Natick, MathWorks, 2000.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.