Nane lifi katkılı atık hurma çekirdeğinden üretilen kompozit malzemenin özelliklerinin incelenmesi

H. Mehmet Taşdemir, Alpay ŞAHİN, Ahmet Fırat Karabulut, Metin Gürü
562 71

Öz


Bu çalışmada, tarımsal bir atık olan hurma çekirdeği kullanılarak polimerik kompozit malzeme üretimi gerçekleştirilmiş ve ahşap malzeme olarak kullanımı incelenmiştir. Polimerik bağlayıcı olarak üre-formaldehit reçinesi kullanılmıştır. Kompozit malzemenin mekanik dayanımı ve yanmazlık özelliği farklı polimer/dolgu maddesi oranlarında (1/1, 1/2, 1/3 ve 1/4) incelenmiştir. Yapıdaki polimer oranın artışı hem mekanik dayanım hem de yanmazlığı artırmıştır. Eşit oranda polimer ve dolgu maddesi içeren kompozit malzemede mekanik dayanım 6,2 MPa ve LOI değeri 50 olarak belirlenmiştir. Malzemenin dayanımını geliştirmek için yapıya ilave edilen nane lifinin mekanik dayanımı geliştirdiği gözlenmiştir. Kompozit malzemedeki dolgu maddesinin artışı ile su absorplama kapasitesinde de artış gözlenmiştir.  Elde edilen sonuçlar hurma çekirdeği kullanılarak hazırlanan polimerik kompozit malzemenin ahşap malzemelere alternatif olabileceğini ortaya koymuştur.

Anahtar kelimeler


Kompozit malzeme; Hurma çekirdeği; Mekanik dayanım; Limit oksijen İndeksi

Tam metin:

PDF


Referanslar


Gürü M., Tekeli S., Bilici I., Manufacturing of urea–formaldehyde based composite particleboard from almond shell, Mater. Des., 27, 1148–1151, 2006.

Sahin A., Tasdemir H.M., Karabulut A.F., Gürü M., Mechanical and thermal properties of particleboard manufactured from waste peachnut shell with glass powder, Arabian J. Sci.Eng., 42, 1559-1568 2017.

Gürü M., Atar M., Yıldırım R., Production of polymer matrix composite particleboard from walnut shell and improvement of its requirements, Mater.Des., 29, 284-287, 2008.

Gürü M., Aruntaş Y., Bilici İ., Tüzün N., Processing of urea-formaldehyde based particleboard from hazelnut shell and improvement of its fire and water resistance, Fire Mater., 33, 413-419, 2009.

Gürü M., Karabulut A.F., Aydin M.Y., Bilici I., Processing of fireproof and high temperature durable particleboard from rice husk, High Temp. Mater.Processes, 34, 599-604, 2015.

Biswas D., Bose S.K., Hossain M., Physical and mechanical properties of urea formaldehyde bonded particleboard made from bamboo waste, Int. J.Adhes.Adhes., 31, 84-87, 2011.

Rowel R.M., Norimoto M., Dimensional stability of bamboo particleboards made from acetylated particles, Mokuzai Gakkaishi, 34, 627–629, 1988.

Pirayesh H., Moradpour P., Sepahvand S. Particleboard from wood particles and sycamore leaves Physico-mechanical properties, Eng.Agric. Environ. Food, 8, 38-43, 2015.

Klímek P., Meinlschmidt P., Wimmer R., Plinke B., Schirp A., Using sunflower (Helianthus annuus L.), topinambour (Helianthus tuberosus L.) and cup-plant (Silphium perfoliatum L.) stalks as alternative raw materials for particleboards, Ind. Crops. Prod., 92, 157-164, 2016.

Que Z., Furuno T., Katoh S., Nishino Y., Effects of urea-formaldehyde resin mole ratio on the properties of particleboard, Build. Environ., 42, 1257-1263, 2007.

Khazaeian A., Ashori A., Dizaj M. Y., Suitability of sorghum stalk fibers for production of particleboard, Carbohydr. Polym., 120, 15–21, 2015.

Solyman W. S. E., Nagiub H. M., Alian N. A., Shaker N. O., Kandil U. F. Synthesis and characterization of phenol/formaldehyde nanocomposites: Studying the effect of incorporating reactive rubber nanoparticles or Cloisite-30B nanoclay on the mechanical properties, morphology and thermal stability, J. Radiat. Res.Appl.Sci., 10, 72-79, 2017.

Çakanyıldırım Ç., Improvement of the fire resistance and physical properties of glass fiber and particle reinforced phenol and urea formaldehyde, Journal of The Faculty of Engineering and Architecture of Gazi University, 26, 185-190, 2014.

Kim S., Kim H.J., Effect of addition of polyvinyl acetate to melamine formaldehyde resin on the adhesion and formaldehyde emission in engineered flooring, Int. J. Adhes. Adhes., 25, 456-461, 2005.

Kaboorani A., Riedl B. Improving performance of polyvinyl acetate (PVA) as a binder for wood by combination with melamine based adhesives, Int. J. Adhes. Adhes., 31, 605-611, 2011.

Zhang L., Hu Y., Novel lignocellulosic hybrid particleboard composites made from rice straw and coir fibers, Mater. Des., 55, 19-26, 2014.

Li B., Zhengi Y., Pan Z. Hartsough B., Improved properties of medium density particleboard manufactured from saline creeping wild rye and HDPE plastic, Ind. Crops. Prod., 30, 65-71, 2009.

Benthien J. T., Sommerhuber P. F., Heldner S., Ohlmeyer M., Seppke B., Krause A., Influence of material origin on the size distribution of wood particles for wood-plastic composite (WPC) manufacture, Eur. J. Wood Prod., 75, 477-480, 2017.

Han G.P., Zhang C.W., Zhang D.M. Upgrading of urea formaldehyde-bonded reed and wheat straw particleboard using silane coupling agents, J. Wood Sci., 44, 282–286, 1998.

Kusumaha S.S., Umemuraa K., Yoshiokac K., Miyafuji H., Kanayama K. Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard I: Effects of pre-drying treatment and citric acid content on the board properties, Ind. Crops Pro., 84, 34–42, 2016.

Viswanathan R., Gothandapani L. Optimum process variables for the production of coir pith particle board, J. of Agr. Eng. Res., 74, 331–337, 1999.

Ayrilmis N., Kwon J.H., Han T.H. Effect of resin type and content on properties of composite particleboard made of a mixture of wood and rice husk, Int. J. Adhes. Adhes., 38, 79-83, 2012.

Harada T., Uesugi S., Masuda H. Fire resistance of thick wood-based boards, J. Wood Sci., 52, 544–551, 2006.

Arab B., Shokuhfar A. Molecular dynamics simulation of cross-linked urea-formaldehyde polymers for self-healing nanocomposites: prediction of mechanical properties and glass transition temperature, J. Mol. Model., 19, 5053-5062, 2013.

Cherdron H., Rehahn M., Ritter H., Voit B. Polymer Synthesis: Theory and Practise: Fundamentals, methods, experiment, 5th. Ed., Springer, Berlin, 2013.

Tang Y., Wang D., Jing X.K., Ge X.G., Yang B., Wang Y.Z. A Formaldehyde-Free Flame Retardant Wood Particleboard System Based on Two-Component Polyurethane Adhesive, J. Appl. Polym. Sci., 108, 1216–1222, 2008.

Rangavar H., Hoseiny M.S.F. The effect of nanocopper additions in a urea-formaldehyde adhesive on the physical and mechanical properties of particleboard manufactured from date palm waste, Mech. Comp. Mat., 51, 119-126, 2015.

Mohammadkazemi F., Aguiar R., Cordeiro N. Improvement of bagasse fiber–cement composites by addition of bacterial nanocellulose: an inverse gas chromatography study., Cellulose, 24, 1803–1814, 2017.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.