Stone-Wales kusuru içerisindeki farklı bölgelere azot atomu katkılandırmanın grafenin mekanik özellikleri üzerine etkisi

Ahmet Emin Şentürk, Ahmet Sinan Öktem, Alp Er Şevki Konukman
553 84

Öz


Bu çalışmada, moleküler dinamik (MD) simülasyon metodu ile 9,73 nm × 6,76 nm boyutlarındaki grafenin, Stone-Wales (SW) kusuru içerisinde, dört farklı bölgede azot (N) atomu ile katkılandırılmasının mekanik özellikler (elastisite modülü, çekme dayanımı ve kopma gerinimi) üzerindeki etkisi incelenmiştir. İlk olarak çeşitli konsantrasyonlardaki SW kusuru ve N atomu katkılandırılması ayrı olarak ele alınmış ve grafenin mekanik özellikleri üzerine etkisi araştırılmıştır. SW kusuru ve N atomu katkılandırılmasının konsantrasyonları artınca grafenin mekanik özellikleri kademeli olarak azalmaktadır. N atomu katkılandırılması SW kusuruna göre grafenin elastisite modülü üzerinde oldukça az bir etkiye sahiptir. Farklı konsantrasyonlarda SW kusuru içerisindeki dört farklı bölgede N atomu katkılandırılması incelendiğinde, SW kusurunun merkez bölgesinde gerçekleştirilen katkılandırma (1. ve 2. bölge) kenar bölgelere (3. ve 4. bölge) göre daha yüksek mekanik özellikler göstermektedir. Aynı zamanda, %2,5 N ve %5 SW konsantrasyon değerine kadar, SW kusurunun içerisinde 1. bölgede gerçekleştirilen N atomu katkılandırılması rastgele olarak gerçekleştirilen N atomu katkılandırması ve SW kusuruna göre daha iyi mekanik özellikler göstermektedir

Anahtar kelimeler


Moleküler dinamik, grafen, mekanik özellikler, Stone-Wales kusuru, azot katkılandırması

Tam metin:

PDF


Referanslar


Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric field effect in atomically thin carbon films, Science, 306 (5696), 666-669, 2004.

Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V, Dubonos S.V., Firsov A.A., Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197-200, 2005.

Zhang Y.B., Tan Y.W., Stormer H.L., Kim P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201-204, 2005.

Geim A.K., Novoselov K.S., The rise of graphene, Nature Materials, 6 (3), 183-191, 2007.

Lee C., Wei X., Kysar J.W., Hone J., Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (5887), 385-388, 2008.

Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C.N., Superior thermal conductivity of single-layer graphene, Nano Lett, 8 (3), 902-907, 2008.

Williams J.R., DiCarlo L., Marcus C.M., Quantum Hall effect in a gate-controlled p-n junction of graphene, Science, 317 (5838), 638-641, 2007.

Otani T., Whiteside L.A., White S.E., McCarthy D.S., Effects of femoral component material properties on cementless fixation in total hip arthroplasty, J Arthroplasty, 8 (1), 67-74, 1993.

Ghosh S., Calzio I., Teweldebrhan D., Pokatilov E.P., Nika D.L., Balandin A.A., Bao W., Miao F., Lau C.N., Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits, Appl Phys Lett, 92 (15), 151911, 2008.

Cai W.W., Moore A.L., Zhu Y.W., Li X.S., Chen S.S., Shi L., Ruoff R.S., Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett, 10 (5), 1645-1651, 2010.

Iwamoto Y., Yoshioka A., Naito T., Cuya J., Ido Y., Okawa R., Jeyadevan B., Yamaguchi H., Field induced anisotropic thermal conductivity of silver nanowire dispersed-magnetic functional fluid, Exp Therm Fluid Sci, 79, 111-117, 2016.

Boukhvalov D.W., Katsnelson M.I., Chemical functionalization of graphene with defects, Nano Lett, 8 (12), 4373-4379, 2008.

Rutter G.M., Crain J.N., Guisinger N.P., Li T., First P.N., Stroscio J.A., Scattering and interference in epitaxial graphene, Science, 317 (5835), 219-222, 2007.

Sepioni M., Nair R.R., Rablen S., Narayanan J., Tuna F., Winpenny R., Geim A.K., Grigorieva I.V., Limits on intrinsic magnetism in graphene, Phys Rev Lett, 105 (20), 207205, 2010.

Banhart F., Kotakoski J., Krasheninnikov A.V., Structural defects in graphene, ACS Nano, 5 (1), 26-41, 2011.

Panchakarla L.S., Subrahmanyam K.S., Saha S.K, Govindaraj A., Krishnamurthy H.R., Waghmare U.V., Rao C.N.R., Synthesis, structure, and properties of boron- and nitrogen-doped graphene, Adv Mater, 21 (46), 4726-4730, 2009.

Wei D., Liu Y., Wang Y., Zhang H., Huang L., Yu G., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett, 9 (5), 1752-1758, 2009.

Deng D., Pan X., Yu L., Cui Y., Jiang Y., Qi J., Li W.-X., Fu Q., Ma X., Xue Q., Sun G., Bao X., Toward N-doped graphene via solvothermal synthesis, Chem Mater, 23 (5), 1188-1193, 2011.

Zhang C., Fu L., Liu N., Liu M., Wang Y., Liu Z., Synthesis of nitrogen‐doped graphene using embedded carbon and nitrogen sources, Adv Mater, 23 (8), 1020-1024, 2011.

Wang Y., Shao Y., Matson D.W., Li J., Lin Y., Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano, 4 (4), 1790-1798, 2010.

Wang X., Li X., Zhang L., Yoon Y., Weber P.K., Wang H., Guo J., Dai H., N-doping of graphene through electrothermal reactions with ammonia, Science, 324 (5928), 768-771, 2009.

Ma F.X., Wang J., Wang F.B., Xia X.H., The room temperature electrochemical synthesis of N-doped graphene and its electrocatalytic activity for oxygen reduction, Chem Commun, 51 (7), 1198-1201, 2015.

Wang R., Xu C., Sun J., Gao L., Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: nucleation mechanism and lithium storage properties, Sci Rep, 4, 7171, 2014.

Zhang Y., Ge J., Wang L., Wang D., Ding F., Tao X., Chen W., Manageable N-doped graphene for high performance oxygen reduction reaction, Sci Rep, 3, 2771, 2013.

Wen Z.H., Wang X.C., Mao S., Bo Z., Kim H., Cui S.M., Lu G.H., Feng X.L., Chen J.H., Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor, Adv Mater, 24 (41), 5610-5616, 2012.

Lv R., Li Q., Botello-Méndez A.R., Hayashi T., Wang B., Berkdemir A., Hao Q., Elías A.L., Cruz-Silva R., Gutiérrez H.R., Kim Y.A., Muramatsu H., Zhu J., Endo M., Terrones H., Charlier J.C., Pan M., Terrones M., Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing, Sci Rep, 2, 586, 2012.

Wang X., Tabakman S.M., Dai H., Atomic layer deposition of metal oxides on pristine and functionalized graphene, J Am Chem Soc, 130 (26), 8152-8153, 2008.

Wang M.C., Yan C., Ma L., Chen M.W., Effect of defects on fracture strength of graphene sheets, Comput Mater Sci, 54, 236-239, 2012.

Ansari R., Ajori S., Motevalli B., Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation, Superl Microstr, 51 (2), 274-289, 2012.

Xiaoyu S., Zuoguang F., Mingtan X., Yuanjie X., Effects of vacancy defect on the tensile behavior of graphene, Theor Appl Mech Lett, 4 (5), 051002, 2014.

Mortazavi B., Ahzi S., Thermal conductivity and tensile response of defective graphene: A molecular dynamics study, Carbon, 63, 460-470, 2013.

Mortazavi B., Ahzi S., Toniazzo V., Rémond Y., Nitrogen doping and vacancy effects on the mechanical properties of graphene: A molecular dynamics study, Phys Lett A, 376 (12), 1146-1153, 2012.

Zeng H., Zhao J., Wei J.W., Hu H.F., Effect of N doping and Stone-Wales defects on the electronic properties of graphene nanoribbons, Eur Phys J B, 79 (3), 335-340, 2011.

Accelrys Inc. San Francisco, https://accelrys.com.

Zhao H., Min K., Aluru N.R., Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension, Nano Lett, 9 (8), 3012-3015, 2009.

Plimpton S., Fast parallel algorithms for short-range molecular dynamics, J Comp Phys, 117 (1), 1-19, 1995.

Lindsay L., Broido D.A., Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Phys Rev B, 81 (20), 205441, 2010.

Shenderova O.A., Brenner D.W., Omeltchenko A., Su X., Yang L. H., Atomistic modeling of the fracture of polycrystalline diamond, Phys Rev B, 61 (1), 3877-3888, 2000.

Tersoff J., New empirical approach for the structure and energy of covalent systems, Phys Rev B, 37 (12), 6991-7000, 1988.

Wang Y., Shao Y., Matson D.W., Li J., Lin Y., Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano, 4 (4), 1790-1798, 2010.

Hoover W.G., Canonical dynamics: Equilibrium phase-space distributions, Phys Rev A, 31 (3), 1695-1697, 1985.

Mortazavi B., Ahzi S., Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene, Solid State Commun, 152 (15), 1503-1507, 2012.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.