Farklı ön işlem uygulanan Ahlatın kuruma ve büzülme davranışının modellenmesi

İnci Türk Toğrul, Rabiya Safiye Çelebi, Hasan Toğrul Toğrul
632 106

Öz


Bu çalışmada yaban armudu olarak bilinen ahlatlar (pyrus eleagrifolia), laboratuar tipi kurutucuda 4 farklı sıcaklıkta (75 oC- 45 oC) ön işlemsiz ve 10 ayrı ön işlem uygulanarak kurutuldu. Ön işlem çözeltileri olarak, 65 brixlik maltoz, sakaroz, glikoz, maltodekstrin, sorbitol, %65 sakaroz-%10 tuz, %5 lik Na2SO5, %2 EO %5 Na2SO5, %5 K2SO5 ve %2 EO %5K2SO5 çözeltileri kullanıldı. Ahlatların zamanla boyutsuz nem içeriğindeki ve nem içeriği ile kuruma hızındaki değişim incelendi. Azalan kuruma hızı dönemi için karakteristik taşınım katsayısı olan difüzyon katsayısı tüm sıcaklık ve ön işlemler için büzülmenin dikkate alındığı ve alınmadığı durumlar için hesaplandı. Büzülmenin dikkate alınmasıyla daha düşük difüzyon katsayıları ve daha düşük aktivasyon enerjisi elde edildi.  Ahlatın zamanla boyutsuz nem içeriğindeki değişim literatürde yaygın olarak kullanılan 5 model (Newton, Page, Henderson-Pabis, Logaritmik ve Midilli modelleri) kullanılarak modellendi. Model katsayıları p<0,05 anlamlılık düzeyinde test edildi. Modellerin ölçüm değerleri ile uygunluğu R2 ve c2 testleriyle incelendi. Önişlemsiz, maltoz, glikoz, sakaroz, sakaroz-tuz, %5 Na2S2O5, %2 EO %5 Na2S2O5 ve %5 K2S2O5 işlemlerinde Logaritmik modelin, sorbitol, maltodekstrin ve %2 EO %5K2S2O5 işlemlerinde Newton modellerinin en uygun olduğu görüldü. Ahlatın kuruması sırasında meydana gelen büzülme literatürdeki 6 büzülme modeliyle incelendi. Büzülmeyi açıklamada doğrusal ve exponansiyel modellerin diğer modellere göre daha uygun olduğu görüldü.

Anahtar kelimeler


Ahlat, Kurutma, Ön işlem, Difüzyon Katsayısı, Modelleme

Tam metin:

PDF


Referanslar


Doymaz I., Convective drying kinetics of strawberry, Chemical Engineering and Processing: Process Intensification, 47, 914–919, 2008.

Toğrul İ.T., Pehlivan D., Modelling of drying kinetics of single apricot, Journal of Food Engineering, 58(1), 23-32, 2003.

Giri S.K., Prasad S., Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms, Journal of Food Engineering, 78, 512-521, 2007.

Doymaz İ., The kinetics of forced convective air-drying of pumpkin slices, Journal of Food Engineering, 79, 243-248, 2007.

Lahsasni S. , Kouhila M. , Mahrouz M., Jaouhari J. T. , Drying kinetics of prickly pear fruit (Opuntia ficus indica), Journal of Food Engineering, 61,173-179, 2004.

Berruti F.M., Klaas M. , Briens C., Berruti F., Model for convective drying of carrots for pyrolysis, Journal of Food Engineering, 92, 196-201, 2009.

Menges H.O., Ertekin C. , Mathematical modeling of thin layer drying of Golden apples, Journal of Food Engineering, 77, 119-125, 2006a.

Menges H.O., Ertekin C., Thin layer drying model for treated and untreated Stanley plums, Energy Conversion and Management, 47, 2337-2348, 2006b.

Ertekin C.,Yaldiz O., Drying of eggplant and selection of a suitable thin layer drying model, Journal of Food Engineering, 63, 349-359, 2004.

Azzouz S., Guizani A., Jomaa W., Belghith A., Moisture diffusivity and drying kinetic equation of convective drying of grapes, Journal of Food Engineering, 55, 323-330, 2002.

Pangavhane D.R., Sawhney R.L., Sarsavadia P.N., Effect of various dipping pretreatment on drying kinetics of Thompson seedless grapes, Journal of Food Engineering, 39, 211-216,1999.

Guiné R.P.F., Pear drying: Experimental validation of a mathematical prediction model, Food and Bioproducts Processing, 86, 248-253, 2008.

Dadalı G., Demirhan E., Özbek B., Effect of drying conditions on rehydration kinetics of microwave dried spinach, Food and Bioproducts Processing, 86, 235-241, 2008.

Ozkan A.I., Akbudak B., Akbudak N., Microwave drying characteristics of spinach, Journal of Food Engineering, 78 (2), 577-583, 2007.

Contreras C., Martín-Esparza M.E., Chiralt A., Martínez-Navarrete N., Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry, Journal of Food Engineering, 88, 55-64, 2008.

Stępień B. , Effect of vacuum-microwave drying on selected mechanical and rheological properties of carrot, Biosystems Engineering, 99, 234 238, 2008.

Özbek B., Dadalı G., Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment, Journal of Food Engineering, 83, 541-549, 2007.

Reyes A., Cerón S., Zúñiga R., Moyano P., A comparative study of microwave-assisted air drying of potato slices, Biosystems Engineering, 98, 310-318, 2007.

Alibas I., Microwave, air and combined microwave–air-drying parameters of pumpkin slices, LWT - Food Science and Technology, 40, 1445–1451, 2007.

Wang Z., Sun J., Chen F., Liao X., Hu, X., Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying, Journal of Food Engineering, 80, 536–544, 2007.

Wang J., Sheng K., Far-infrared and microwave drying of peach, LWT – Food Science and Technology, 39, 247-255, 2006.

Celma A.R., Cuadros F., López-Rodríguez F., Characterisation of industrial tomato by-products from infrared drying process, Food and Bioproducts Processing, 87, 282-291, 2009.

Çağlar A., Toğrul İ.T., Toğrul H., Moisture and thermal diffusivity of seedless grape under infrared drying, Food and Bioproducts Processing, 87, 292-300, 2009.

Celma A. R., Cuadros F., López-Rodríguez F., Characterisation of industrial tomato by-products from infrared drying process, Food and Bioproducts Processing, 87, 282-291, 2009.

Das I., Das S.K., Bal S., Drying kinetics of high moisture paddy undergoing vibration-assisted infrared (IR) drying, Journal of Food Engineering, 95,166-171, 2009.

Kumar A., Tiwari G.N., Effect of mass on convective mass transfer coefficient during open sun and greenhouse drying of onion flakes, Journal of Food Engineering, 79, 1337-1350, 2007.

Sharma G.P., Verma R.C. , Pathare P., Mathematical modeling of infrared radiation thin layer drying of onion slices, Journal of Food Engineering, 71, 282-286, 2005.

Wang J., Sheng K., Far-infrared and microwave drying of peach, LWT – Food Science and Technology, 39, 247-255, 2006.

Toğrul H., Simple modeling of infrared drying of fresh apple slices, Journal of Food Engineering, 71, 311-323, 2005.

Toğrul H., Suitable drying model for infrared drying of carrot, Journal of Food Engineering, 77, 610-619, 2006.

Liu Q., Bakker-Arkema F.W., Stochastic modelling of grain drying, Part 2: Model development, Journal of Agricultural Engineering Research, 66, 275–280, 1997.

Zhang Q., Litchfield J. B., An optimisation of intermittent corn drying in a laboratory scale thin layer dryer, Drying Technology, 9, 383–395, 1991.

Toğrul İ.T., Pehlivan D., Modelling of thin layer drying kinetics of some fruits under open-air sun drying process, Journal of Food Engineering, 65, 413-425, 2004.

Toğrul İ.T., Modeling of heat and moisture transport during drying black grapes, International Journal of Food Science and Technology 45, 1146–1152, 2010.

Midilli A., Küçük H., Mathematical modeling of thin layer drying of pistachio by using solar energy, Energy Conv. Man. 44(7), 1111-1122, 2003.

Rahman S., Food properties handbook, Boca Raton, Florida: CRC Press LLC, 1995.

Ratti, C., Shrinkage during drying of foodstuffs, Journal of Food Engineering, 23, 91-105, 1994.

Mayor L., Sereno A.M., Modelling shrinkage during convective drying of food materials: a review, Journal of Food Engineering, 61, 373-386, 2004.

Suzuki K., Tsutomu H., Hosaka H., Shrinkage in dehydration of root vegetables, J. of Food Sci., 41, 1189, 1976.

Lozano J. R., Rotstein E., Urbicain M. J. ,Shrinkage porosity and bulk density of foodstuffs at changing moisture contents, Journal of Food Science, 48, 1497-1502, 1553, 1983.

Venkatachalapathy K., Raghavan G. S.V., Shrinkage of strawberries during microwave drying, Drying'98, Halkidiki, Greece, 1358–1366, 1998.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.