silika yüzeylerin ıslanma hareketlerinin moleküler dinamik ile modellenmesi

Murat Barisik
548 102

Öz


Yeni üretim tekniklerine paralel olarak nano-boyutlu teknolojiler çok geniş bir uygulama alanında kullanılmaya başlanmakta ve yeni uygulamalar geliştirmek için keşfedilmesi ve anlaşılması gereken konular süratle artmaktadır. Bu doğrultuda, yeni uygulamalarda sıkça yer bulan silikon ve silikon-dioksitin mikro/nano boyutlardaki malzeme özelliklerinin anlaşılmasına büyük ihtiyaç oluşmaktadır. Özellikle bu yüzeylerin ıslanma hareketlerinin anlaşılabilmesi ve hatta kullanılacak uygulamaya göre ayarlanabilmesi sayısız uygulama için önem arz etmektedir. Bu nedenlerle, nano-teknolojide sıkça kullanılan silikon-dioksit malzemesini ve su moleküllerini, nano-ölçeklerde moleküler olarak modellenmesi bu çalışmada gerçekleştirildi. Modelleme molekuler dinamik hesaplamaları ile yapildi. Silikon-dioksit yüzey üzerinde nano su damlacıkları olusturup, denge halinde oluşan ıslatma açısı ölçümleri yapildi. Literatürde işlem yükünü azaltmak için sıklıkla uygulanan, katı yüzey termal titreşimlerinin ıslatmaya olan etkisinin ihmal edilmesi ve modellenmemesinin ıslatma açısına olan etkisi incelendi. Katı moleküllerin termal titreşimlerinin ıslatma modellenen ıslatma fiziğine baskın bir etkisi olduğu görüldü. Geçtiğimiz yillarda doğa taklidi olarak bilinen çalışma çevreleri tarafından hayata geçirilmeye çalışılan Lotus yaprağı etkisi temelli yüzey ıslatma kontrolu moleküler seviyede uygulandı. Yüzey üzerinde oluşturulan nano boyutlardaki yüzey yapılarının ıslanma açısını değiştirebildiği gösterildi. Temiz (0 0 1) silika yüzeyinde nano ölçek çizgi gerilimi etkisi altında ölçülen ıslanma açısının deneysel silika ıslanma açısı aralığında olduğu bulundu.


Anahtar kelimeler


Moleküler dinamik, silika, ıslatma açısı, lotus etkisi

Tam metin:

PDF


Referanslar


Kim, B. S., Shin, S., Shin, S. J., Kim, K. M. ,Cho, H. H., Micro-nano hybrid structures with manipulated wettability using a two-step silicon etching on a large area, Nanoscale research letters, 6(1), 1-10, 2011.

Haller, I., Covalently attached organic monolayers on semiconductor surfaces, Journal of the American Chemical Society 100(26), 8050-8055, 1978.

Zorba, V., Persano, L., Pisignano, D., Athanassiou, A., Stratakis, E., Cingolani, R., Tzanetakis, P., Fotakis, C., Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation, Nanotechnology, 17(13), 3234, 2006.

Qiu, Y., Chen, Y., Liu, L., Zhao, G., Water and ion distributions in a silicon nanochannel: a molecular dynamics study Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 226(1), 31-34, 2012.

Chai, J., Liu, S., Yang, X., Molecular dynamics simulation of wetting on modified amorphous silica surface, Applied surface science, 255(22), 9078-9084, 2009.

Yao, H., Dai, Y., Feng, J., Wei W., Huang W., Graft and characterization of 9-vinylcarbazole conjugated molecule on hydrogen-terminated silicon surface, Applied Surface Science, 253(3), 1534 – 1539, 2006.

Bhushan, B., Jung, Y. C., Koch, K., Micro-nano-and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 367(1894), 1631-1672, 2009.

Yen, T.H., Wetting characteristics of nanoscale water droplet on silicon substrates with effects of surface morphology, Molecular Simulation, 37(9), 766-778, 2011.

Barisik, M., Beskok, A. Wetting characterisation of silicon (1, 0, 0) surface, Molecular Simulation, 39(9), 700-709. 2013.

Young, T., An Essay on the Cohesion of Fluids Philosophical Transactions of the Royal Society of London, 95, 65-87, 1805.

Brinkmann, M., Kierfeld, J., Lipowsky, R., A general stability criterion for droplets on structured substrates Journal of Physics A: Mathematical and General, 37(48), 11547, 2004.

Wang, J. Y., Betelu, S., Law, B. M., Line tension approaching a first-order wetting transition: Experimental results from contact angle measurements Physical Review E, 63, 31601, 2001.

Wenzel, R. N., Resistance of Solid Surfaces to Wetting by Water, Industrial & Engineering Chemistry, 28(8), 988-994, 1936.

Cassie, A. B. D. , Baxter, S., Wettability of porous surfaces Transactions of the Faraday Society, 40, 546-551, 1944.

Neinhuis, C. , Barthlott, W., Characterization and distribution of water-repellent, self-cleaning plant surfaces, Annals of botany, 79(6), 667-677, 1997.

Jung, C. Y. , Bushnan, B. Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity, Nanotechnology, 17(19), 4970, 2006.

Moradi, S., Kamal, S., Hatzikiriakos, S. G., Superhydrophobic Laser Ablated Stainless Steel Substrates and their Wettability, Surface Innovations, 3(SI4), 1-12, 2015.

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., Klein, M. L., Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, 79(2), 926-935, 1983.

Berendsen, H.J.C., Grigera, J. R., Straatsma, T. P., The missing term in effective pair potentials, Journal of Physical Chemistry, 91(24), 6269-6271, 1987.

Allen M. P., Tildesley D. J., Computer simulation of liquids, Oxford, New York: Oxford university press, 1989.

Plimpton, S., Pollock, R., Stevens, M. Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations in Proc of the Eighth SIAM Conference on Parallel Processing for Scientific Computing Minneapolis, 1997.

Lee, D. J., Cho, K. Y., Jang, S. Song, Y. S., Youn, J. R., Liquid slip on a nanostructured surface, Langmuir, 28(28), 10488-10494, 2012.

Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., Koumoutsakos, P., On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes, J. Phys. Chem. B, 107, 1345–1352, 2003.

Park, J.H., Aluru, N.R., Temperature-dependent wettability on a titanium dioxide surface, Mol. Simul., 35, 31–37, 2009.

Kanta, A., Sedev, R., Ralston, J., Thermally-and photoinduced changes in the water wettability of low-surface-area silica and titania, Langmuir, 21(6), 2400-2407, 2005.

Cruz-Chu, E. R., Aksimentiev, A., Schulten, K., Water-silica force field for simulating nanodevices, The journal of physical chemistry. B, 110(43), 21497, 2006.

Martinez, N., Wettability of silicon, silicon dioxide, and organosilicate glass, Yüksek Lisans Tezi, Malzeme Bilimi ve Mühendisliği. University of North Texas, 2009.

Williams, R., & Goodman, A. M., Wetting of thin layers of SiO2 by water, Applied Physics Letters, 25(10), 531-532, 1974.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.