Karanlık fermentasyon ile biyohidrojen üretimine işletim parametrelerinin etkisi

Baran Özyurt, Zeynep Yilmazer Hitit, Furkan Soysal, Şule Camcıoğlu, Bülent Akay, Suna Ertunç
288 32

Öz


Bu çalışmada oksijensiz koşullarda patates besi ortamında Clostridium butyricum mikroorganizması kullanılarak biyohidrojen üretilen kesikli biyoreaktörlerde çalkalama hızı,  mikroorganizma aktarım oranı, başlangıç substrat derişimi ve inkübasyon sıcaklığı parametrelerinin biyohidrojen üretimine etkisi incelenmiştir. En uygun parametreler sırasıyla, çalkalama hızı 200 devir/min, mikroorganizma aktarım oranı 1:10, başlangıç substrat derişimi 32,4 g KOİ/L ve sıcaklık 37oC mikroorganizma aktarım oranı olarak belirlenerek, bu koşullarda 1257 ml H2 üretilmiştir. İnkübasyon sıcaklığının 37oC olduğu durumda gecikme fazının başlangıç substrat derişiminden bağımsız olarak yaklaşık 6,5 h sürdüğü gözlenmiştir. Substrat derişimi ile ürün üretimi arasındaki ilişki değerlendirilirken elemanter tepkime hız modeli için tepkime mertebesi 1, tepkime hız sabitleri ise 28 ºC ve 37 ºC sıcaklıklar için sırasıyla 6,5x10-5 min-1 ve 7,92x10-5 min-1 olarak hesaplanmıştır. Arrhenius modelinin sabitleri, Arrhenius katsayısı 9,74x1034 min-1 ve aktivasyon enerjisi 229,20 kJ/mol olarak hesaplanmıştır. Michaelis-Menten modeli ile maksimum H2 üretim hızları 28 ºC ve 37 ºC sıcaklıklar için sırasıyla 0,01147 L H2/L.min ve 0,07466 L H2/L. min, bu sıcaklıklar için Michaelis sabitleri (KM) sırasıyla 181,9 g KOİ/L ve 447,7 g KOİ/L, R2 değerleri ise 0,9458 ve 0,9505 olarak hesaplanmıştır. Modifiye Gompertz modeli ile R2 değerleri tüm çalışmalar için 0,99’dan büyük olarak elde edilmiş, en yüksek H2 üretim potansiyelleri 28 ºC ve 37 ºC sıcaklıklar için 32,4 g KOİ/L başlangıç substrat derişiminde sırasıyla 2,126 L H2/L ve 2,777 L H2/L olarak bulunmuş, en yüksek H2 üretim hızına 0,01525 L H2/L.min ile 37 ºC sıcaklık ve 27 g KOİ/L başlangıç substrat derişiminde ulaşılmıştır.

Anahtar kelimeler


Biyohidrojen; Anaerobik karanlık fermentasyon; Clostridium butyricum; Kinetik analiz

Tam metin:

PDF


Referanslar


Kim, D., Han, S., Effect of gas sparging on continuous fermentative hydrogen production, Int. J. Hydrogen Energy, 31, 2158-2169, 2006.

Liu, G., Shen, J., Effect of culture and medium conditions on hydrogen production from starch using anaerobic bacteria, J. Biosci. Bioeng., 98 (4), 251-256, 2004.

Özkan, G., Özkan, G., Şahbudak, B., Etanolden Pd-NiO, Ni-Cu-Pd/aktif karbon katalizörleri ile H2 üretiminde su/ethanol mol oranının hidrojen verimi ve seçimliliğine etkisi, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (2), 417-424, 2016.

Melikoglu, M., Albostan, A., Bioethanol production and potential of Turkey, Journal of the Faculty of Engineering and Architecture of Gazi University, 26 (1), 151-160, 2011.

Gulum, M., Bilgin, A., Cakmak, A., Comparison of optimum reaction parameters of corn oil biodiesels produced by using sodium hydroxide (NaOH) and potassium hydroxide (KOH), Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (3), 503-511, 2015.

Erdem, F., Tosun, A., Ergun, M., Biosorption of Remazol Yellow (RR) by Saccharomyces cerevisiae in a batch system, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (4), 971-978, 2016.

Uyar, B., Eroglu, I., Yücel, M., Gündüz, U., Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents, Int. J. Hydrogen Energy, 34 (10), 4517-4523, 2009.

Mizuno, O., Dinsdale, R., Hawkes, F., Hawkes, D., Noike, T., Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresour. Technol., 73, 59-65, 2000.

Das, D., Veziroglu, T.N., Advances in biological hydrogen production processes, Int. J. Hydrogen Energy, 33 (21), 6046-6057, 2008.

Hitit, Z.Y., Boyacioglu, H., Ozyurt, B., Ertunc, S., Hapoglu, H., Akay, B., Self-tuning GMV control of glucose concentration in fed-batch baker’s yeast production, Appl. Biochem. Biotechnol., 172 (8), 3761-3775, 2014.

Hallenbeck, P.C., Abo-Hashesh, M., Ghosh, D., Strategies for improving biological hydrogen production, Bioresour. Technol., 110, 1-9, 2012.

Ozyurt, B., Hitit, Z.Y., Ertunc, S., Hapoglu, H., Akay, B., Demirtas, G. F., Biological hydrogen production: effects of inoculation and production media, International Journal of Global Warming, 6 (2-3), 350-365, 2014.

Genç, N., Fermentatif biyohidrojen üretim proseslerinde hidrojen veriminin geliştirilmesindeki yaklaşımlar, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Yayınları, 26 (3), 225-239, 2010.

Hitit, Z.Y., Lazaro, C.Z., Hallenbeck, P.C., Hydrogen production by co-cultures of Clostridium butyricum and Rhodospeudomonas palustris: Optimization of yield using response surface methodology, Int. J. Hydrogen Energy 10.1016/j.ijhydene.2016.12.122, 2017.

Pirt, J.S., Principles of Microbe and Cell Cultivation. Blackwell Scientific Publications, Cornwall,1975.

Hallenbeck, P.C., Ghosh, D., Improvements in fermentative biological hydrogen production through metabolic engineering, J. Environ. Manage., 95, 360-364, 2012.

Jackson, A.T., Process Engineering in Biotechnology, John Wiley & Sons, A.B.D., 1991.

Jones, D.T., Woods, D. R., Acetone-butanol fermentation revisited, Microbiological Reviews, 50 (4), 484-524, 1986.

Gorwa, M.F., Croux, C., Soucaille, P. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824, J. Bacteriol., 178 (9), 2668-2675, 1996.

Nath, K., Das, D., Modeling and optimization of fermentative hydrogen production, Bioresour. Technol., 102 (18), 8569-8581, 2011.

Abo-Hashesh, M., Wang, R., Hallenbeck, P.C., Metabolic engineering in dark fermentative hydrogen production; theory and practice, Bioresour. Technol., 102 (18), 8414-8422, 2011.

Chandrasekhar, K., Lee, Y.J., Lee, D.W., Biohydrogen production: strategies to improve process efficiency through microbial routes, Int. J. Mol. Sci., 16 (4), 8266-8293, 2015.

Acikel, Y.S., Ersan, M., Acikel, U., Effects of stirring and aeration rates on lipase production and growth of R. Delemar in the media containing glucose or molasses sucrose and PFC, Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (4), 811-818, 2013.

Li, Z., Wang, H., Tang, Z., Wang, X, Bai, J., Effects of pH value and substrate concentration on hydrogen production from the anareobic fermentation of glucose, Int. J. Hydrogen Energy, 33, 7413–7418, 2008.

APHA, Standard Methods for the Examination of Water and Wastewater, 21st Ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, A.B.D., 2005.

Güleç, F., Şimşek, E.H., Karaduman, A., Zr/ZSM5 zeolit katalizörleri varlığında 2-metil naftalinin disproporsiyon kinetiği, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 2016.

Lo, Y.C., Chen, W.M., Hung, C.H., Chen, S.D., Chang, J.S., Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies, Water Research, 42 (4), 827-842, 2008.

Wang, J., Wan, W., Kinetic models for fermentative hydrogen production: a review, Int. J. Hydrogen Energy, 34 (8), 3313-3323, 2009.

Laidler, K.J., Meiser, J.H., Physical Chemistry, The Benjamin Cummings Publishing Company, A.B.D., 1982.

Mu, Y., Yu, H.Q., Wang, G., A kinetic approach to anaerobic hydrogen-producing process, Water Res., 41 (5), 1152-1160, 2007.

Lin, C.Y., Chang, C.C., Hung, C.H., Fermentative hydrogen production from starch using natural mixed cultures, Int. J. Hydrogen Energy, 33 (10), 2445-2453, 2008.

Lin, C.Y., Wu, C.C., Wu, J.H., Chang, F.Y., Effect of cultivation temperature on fermentative hydrogen production from xylose by a mixed culture, Biomass Bioenergy, 32 (12), 1109-1115, 2008.

Nath, K., Das, D., Modeling and optimization of fermentative hydrogen production, Bioresour. Technol., 102 (18), 8569-8581, 2011.

Hitit, Z.Y., Lazaro, C.Z., Hallenbeck, P.C., Single stage hydrogen production from cellulose through photo-fermentation by a co-culture of Cellulomonas fimi and Rhodopseudomonas palustris, Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2016.12.035, 2016.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.