3DOM CeO2 ve 3DOM ZrO2 destekli nikel katalizörlerin sentezi, karakterizasyonu ve katalitik aktivite çalışmaları

Filiz Derekaya, İkbal Ay
465 52

Öz


Bu çalışmada 3DOM ZrO2 ve 3DOM CeO2 destekli nikel içeren katalizörlerin sentezi, karakterizyonu ve amonyaktan hidrojen üretim reaksiyonu için aktivite çalışmaları gerçekleştirilmiştir. 3DOM destekler polistiren (PS)’ in şablon olarak kullanıldığı kolloidal kristal şablonlama metodu kullanılarak hazırlanmış ve daha sonra nikel destek yapısına gaz kabarcığı yardımı ile çökelti (tortu) birikimi yöntemi ile katılmıştır. Tüm malzemeler N2 fizisorpsiyon, taramalı elektron mikroskobu (SEM-EDX) ve X-ışını kırınım deseni analizi çalışmaları ile karakterize edilmişlerdir. SEM sonuçları CeO2 ve ZrO2 desteklerinin üç boyutlu düzenli makrogözenekli yapıda sentezlendiğini ve gözenek çaplarının 204-321 nm arasında değiştiğini göstermiştir. SEM sonuçları aynı zamanda NiO’ in 3DOM gözenek yapısı içine başarılı bir şekilde girdiğini de göstermiştir. Destek ve katalizörlerin yapısında makrogözeneklerin yanında mezogözeneklerinde olduğu belirlenmiştir. Amonyaktan hidrojen üretim reaksiyonu 400-600oC sıcaklıkları arasında gerçekleştirilmiştir. 500oC’ ye kadar katalizörler ihmal edilebilir katalitik aktivite göstermişlerdir. Reaksiyon sıcaklığının yükselmesi ile aktivitelerde de yükselmiştir. 600oC sıcaklıkta NiO/3DOM ZrO2 and NiO/3DOM CeO2 katalizörlerinden sırasıyla % 5.6 ve % 18.6 NH3 dönüşümü elde edilmiştir. 


Anahtar kelimeler


3DOM 1; Katalizörler 2; Amonyak 3; Hidrojen 4

Tam metin:

PDF


Referanslar


Wei Y., Liu J., Zhao Z., Duan A., Jiang G., The catalysts of three-dimensionally ordered macroporous Ce1_xZrxO2-supported gold nanoparticles for soot combustion: The metal–support interaction, Journal of Catalysis, 287, 13–29, 2012.

Liu Y., Liu B., Wang Q., Li C., Hua W., Liu Y., Jing P., Zhao W., Zhang J., Three-dimensionally ordered macroporous Au/CeO2–Co3O4 catalysts with mesoporous walls for enhanced CO preferential oxidation in H2-rich gases, Journal of Catalysis, 296, 65–76, 2012.

Xu J., Liu J., Zhao Z., Zheng J., Zhang G., Duan A., Jiang G., Three-dimensionally ordered macroporous LaCoxFe1-xO3 perovskite-type complex oxide catalysts for diesel soot combustion, Catalysis Today, 153, 136–142, 2010.

Wei Y., Liu J., Zhao Z., Xu C., Duan A., Jiang G., Structural and synergistic effects of three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported Pt nanoparticles on the catalytic performance for soot combustion, Applied Catalysis A- General, 453, 250– 261, 2013.

Han D., Li X., Zhang L., Wang Y., Yan Z., Liu S., Hierarchically ordered meso/macroporous γ-alumina for enhanced hydrodesulfurization performance, Microporous Mesoporous Materials, 158, 1-6, 2012.

Zhang J., Jin Y., Li C., Shen Y., Han L., Hu Z., Di X., Liu Z., Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation. Applied Catalysis. B- Environmental, 91, 11–20, 2009.

Ji K., Dai H., Deng J., Song L., Gao B., Wang Y., Li X., Three-dimensionally ordered macroporous Eu0.6Sr0.4FeO3 supported cobalt oxides: Highly active nanocatalysts for the combustion of toluene, Applied Catalysis. B- Environmental 129, 539– 548, 2013.

Zhang X., Su H., Yang X., Catalytic performance of a three-dimensionally ordered macroporous Co/ZrO2 catalyst in Fischer–Tropsch synthesis, Journal of Molecular Catalysis A- Chemcal, 360, 16– 25, 2012.

Zhang H., Alhamed Y.A., Chu W., Ye Z., Al Zahrani A. Al, Petrova L., Controlling Co-support interaction in Co/MWCNTs catalysts and catalytic performance for hydrogen production via NH3 decomposition, Applied Catalysis A- General, 464–465, 156–164, 2013.

Yao L.H., Li Y.X., Zhao J., Ji W.J., Au C.T., Core–shell structured nanoparticles (M@SiO2, Al2O3, MgO; M = Fe, Co, Ni, Ru) and their application in COx-free H2 production via NH3 decomposition, Catalysis Today, 158, 401–408, 2010.

Lorenzut B., Montini T., Bevilacqua M., Fornasiero P., FeMo-based catalysts for H2 production by NH3 decomposition, Applied Catalysis B- Environmental, 125 (2012) 409–417, 2012.

Nakamura I., Fujitani T., Role of metal oxide supports in NH3 decomposition over Ni catalysts, Applied Catalysis A-General, 524, 45–49, 2016.

Liu B., Liu Y., Li C., Hu W., Jing P., Wang Q., Zhang J., Three-dimensionally ordered macroporous Au/CeO2-Co3O4 catalysts with nanoporous walls for enhanced catalytic oxidation of formaldehyde, Applied Catalysis. B- Environmental. 127, 47– 58, 2012.

Liu B., Li C., Zhang Y., Liu Y., Hu W., Wang Q., Han L., Zhang J., Investigation of catalytic mechanism of formaldehyde oxidation over three-dimensionally ordered macroporous Au/CeO2 catalyst, Applied Catalysis. B- Environmental 111– 112, 467– 475, 2012.

Zhang Y., Liang H., Gao X.Y., Liu Y., Three-dimensionally ordered macro-porous CuO–CeO2 used for preferential oxidation of carbon monoxide in hydrogen-rich gases, Catalysis Communications, 10, 1432–1436, 2009.

Wang Z., Al-Daous M.A., Kiesel E.A., Li F., Stein A., Design and synthesis of 3D ordered macroporous ZrO2/Zeolite nanocomposites, Microporous Mesoporous Materials, 120, 351–358, 2009.

Li S., Zheng J., Yang W., Zhao Y., A new synthesis process and characterization of three-dimensionally ordered macroporous ZrO2, Materials. Letters, 61, 4784–4786, 2007.

Gnanamoorthi K., Balakrishnan M., Mariappan R., Ranjith Kumar E., Effect of Ce doping on microstructural, morphological and optical properties of ZrO2 nanoparticles, Materials Science in Semiconductor Processing, 30, 518–526, 2015.

Reyes-Acosta M.A., Torres-Huerta A.M., Domínguez-Crespo M.A., Flores-Vela A.I., Dorantes-Rosales H.J., Ramírez-Meneses E., Influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings, Journal of Alloys Compounds, 643, 150–158, 2014.

Parvulescu V.I., Tiseanu C., Local structure in CeO2 and CeO2–ZrO2 nanoparticles probed by Eu luminescence, Catalysis Today, 253, 33–39, 2015.

Nakagawa K., Ohshima T., Tezuka Y., Katayama M., Katoh M., Sugiyama S., Morphological effects of CeO2 nanostructures for catalytic soot combustion of CuO/CeO2, Catalysis Today, 246, 67–71, 2015.

Yosefi L., Haghighi M., Allahyari S., Ashkriz S., Effect of ultrasound irradiation and Ni-loading on properties and performance of CeO2-doped Ni/clinoptilolite nanocatalyst used in polluted air treatment, Process Safety and Environmental Protection, 9, 26–37, 2015.

Qurashi A., Zhang Z., Asif M., Yamazaki T., Template-less surfactant-free hydrothermal synthesis NiO nanoflowers and their photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 40, 15801-15805, 2015.

Gajengi A.L., Sasaki T., Bhanage B.M., NiO nanoparticles catalyzed three component coupling reaction of aldehyde, amine and terminal alkynes, Catalysis Communications, 72, 174–179, 2015.

Pascariu P., Airinei A., Olaru N., Petrila I., Nica V., Sacarescu L., Tudorache F., Microstructure, electrical and humidity sensor properties of electrospun NiO–SnO2 nanofibers, Sensors and Actuators B, 222, 1024–1031, 2016.

Zhang G., Zhao Z., Xu J., Zheng J., Liu J., Jiang G., Duan A., He H., Comparative study on the preparation, characterization and catalytic performances of 3DOM Ce-based materials for the combustion of diesel soot, Applied Catalysis. B- Environmental, 107, 302– 315, 2011.

Yang R., Yang L., Tao T., Ma F., Xu M., Zhang Z., Contrastive study of structure and photocatalytic performance withthree-dimensionally ordered macroporous CuO–TiO2 and CuO/TiO2, Applied Surface Science, 288, 363– 368, 2014.

Liu Y., Dai H., Deng J., Du Y., Li X., Zhao Z., Wang Y., Gao B., Yang H., Guo G., In situ poly(methyl methacrylate)-templating generation and excellent catalytic performance of MnOx/3DOM LaMnO3 for the combustion of toluene and methanol, Applied Catalysis. B- Environmental, 140– 141, 493– 505, 2013.

Li X., Dai H., Deng J., Liu Y., Xie S., Zhao Z., Wang Y., Guo G., Arandiyan H., Au/3DOM LaCoO3: High-performance catalysts for the oxidation of carbon monoxide and toluene, Chemical Engineering Journal, 228, 965–975, 2013.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.