Kesme derinliğinin sertleştirilmiş çelik malzemenin kriyojenik talaşlı imalat performansına etkisi

Yusuf KAYNAK, Armin Gharibi
341 53

Öz


Bu çalışmada sertleştirilmiş çelik malzemenin farklı kesme parametreleriyle işlenmesinde kriyojenik soğutucuların etkisi araştırılmıştır. Sertleştirilmiş çelik malzemenin talaşlı imalat performansı testlerinde kriyojenik soğutucu olarak sıvı azot ve karbondioksit kullanılmıştır. Kriyojenik soğutucunun seçilen malzemenin işlenmesinde performansına etkisi tornalama operasyonunda test edilmiştir. Testlerde sabit kesme hızı ve iki farklı kesme derinliği kullanılmıştır.  Sertleştirilmiş çeliğin kesme performansını ölçmek için bileşke kuvvet, sürtünme katsayısı, takım aşınması, kesme sıcaklığı ve talaş kırılabilirliği dikkate alınmış ve kriyojenik soğutucular kullanılarak elde edilen bu parametreler kuru kesmede elde edilenlerle kıyaslanmıştır. Kriyojenik soğutucuların sertleştirilmiş çeliğin talaşlı imalat performansına etkisinde belirleyici unsurun kesme derinliği olduğu görülmektedir. 


Anahtar kelimeler


Kriyojenik Talaşlı İmalat; talaşlı imalat performansı; sertleştirilmiş çelik

Tam metin:

PDF


Referanslar


Shaw M.C., Metal cutting principles, Oxford university press New York, 2005.

Kaynak Y., Lu T., Jawahir I.S., Cryogenic machining-induced surface integrity: a review and comparison with dry, MQL, and flood-cooled machining, Machining Science and Technology, 18, 149-198,2014.

Kaynak Y., Karaca H.E, Noebe RD, Jawahir I.S., Analysis of tool-wear and cutting force components in dry, preheated, and cryogenic machining of NiTi shape memory alloys. Procedia CIRP, 498-503, 2013.

Jawahir I.S., Attia H., Biermann D., Duflou J., Klocke F., Meyer D., Newman S.T., Pusavec F., Putz M., Rech J., Schulze V., Cryogenic manufacturing processes, CIRP Annals-Manufacturing Technology,65, 713-736, 2016.

Cassin, C. and Boothroyd G., Lubricating action of cutting fluids, Journal of Mechanical Engineering Science, 7, 67-81, 1965.

El Baradie M., Cutting fluids: Part I. characterisation, Journal of Materials Processing Technology, 56, 786-797,1996.

Adler D.P., Hii W.S., Michalek D.J., Sutherland J.W., Examining the role of cutting fluids in machining and efforts to address associated environmental/health concerns, Machining Science and Technology,10, 23-58, 2006.

Shokrani A., Dhokia V., Newman S.T., Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids, International Journal of Machine Tools and Manufacture,57, 83-101, 2012.

Aramcharoen, A., Influence of Cryogenic Cooling on Tool Wear and Chip Formation in Turning of Titanium Alloy, Procedia CIRP,46,83-86,2016.

Weinert K., Inasaki I., Sutherland J.W., Wakabayashi T., Dry machining and minimum quantity lubrication, CIRP Annals-Manufacturing Technology, 2004. 53(2): p. 511-537.

Uehara K., Kumagai S., Chip formation, surface roughness and cutting force in cryogenic machining, Ann. CIRP,17,409-416, 1968.

Dillon O.W., De Angelis R.J., Lu W.Y., Gunasekera J.S., Deno J.A., The effects of temperature on the machining of metals, Journal of Materials Shaping Technology,8,23-29,1990.

Hong S.Y., Zhao Z., Thermal aspects, material considerations and cooling strategies in cryogenic machining,Clean Products and Processes, 1999. 1(2): p. 107-116.

Hong S.Y., Markus I., Jeong W.C., New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V, International Journal of Machine Tools and Manufacture,41,2245-2260, 2001.

Hong S.Y., Ding Y., Jeong W.C., Friction and cutting forces in cryogenic machining of Ti–6Al–4V, International Journal of Machine Tools and Manufacture, 41, 2271-2285,2001.

Machai C., Biermann D., Machining of β-titanium-alloy Ti–10V–2Fe–3Al under cryogenic conditions: Cooling with carbon dioxide snow, Journal of Materials Processing Technology,211,1175-1183,2011.

Busch K., Hochmuth C., Pause B., Stoll A. Wertheim R., Investigation of Cooling and Lubrication Strategies for Machining High-temperature Alloys, Procedia CIRP,41,835-840,2016.

Kaynak Y., Robertson, S.W., Karaca, H.E., Jawahir, I.S., Progressive tool-wear in machining of room-temperature austenitic NiTi alloys: The influence of cooling/lubricating, melting, and heat treatment conditions, Journal of Materials Processing Technology, 215,95-104,2015.

Gharibi A., Duman E., Ozkutuk M., Kaynak Y., Comparison the effects of liquid nitrogen and carbon dioxide cryogenic coolants on progressive tool wear. 17th International Conference on Machine Design and Production, UMTIK 2016, 360-368,2016.

Ezugwu E., Key improvements in the machining of difficult-to-cut aerospace superalloys, International Journal of Machine Tools and Manufacture, 45,1353-1367, 2005.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.