Bronz ve dökme demir talaşlarının geri dönüştürülmesiyle prizmatik şekilli makine elemanı üretimi ve mekanik karakterizasyonu

Abdullah ASLAN
231 32

Öz


Bu çalışmada küresel grafitli dökme demir (GGG-40) ve Bronz (CuSn10) talaşlarının izostatik sıcak presleme yöntemiyle geri dönüştürülmesi ile üretilen metal matrisli kompozit malzemelerin (MMK) üretimi ve mekanik davranışları incelenmiştir. MMK malzemeler 4 farklı karışım oranında 3 farklı sıcaklıkta ve 3 farklı basınçta üretilerek üretim parametrelerinin gözeneklilik, sertlik ve eğilme mukavemeti üzerine etkisi incelenmiştir. Prizmatik geometrili olarak üretilen numunelerin öncelikle gözeneklilik ve yoğunluk değerleri tespit edilmiştir. Daha sonra Brinell ve Mikro Vickers ve 3 noktadan eğilme deneyleri ile malzemenin mukavemeti belirlenmiştir. Optik mikroskopi tekniği ile Mikro yapı görüntüleri incelenerek talaşların birleşme mekanizması incelenmiştir. Ayrıca XRD analizi aracılığıyla metalik talaşlar arasında ara faz oluşumu olup olmadığı sorgulanmıştır.  Gözeneklilik deneyleri neticesinde %20 mertebelerinde gözeneklilik elde edilmiştir. Aşırı plastik deformasyon gösteren CuSn10 sebebiyle mukavemeti artan CuSn10 talaşları sertlik değerini Saf CuSn10 ile kıyaslanabilir seviyelere getirmiştir. Eğilme deneyi neticesinde MMK malzemelerin eğilme mukavemetleri saf CuSn10’dan düşük çıkmıştır. Sonuç olarak metal talaşların başarılı bir biçimde metal matris kompozit haline getirilebileceği gösterilmiştir.

Anahtar kelimeler


Metal talaşlar; izostatik sıcak presleme; metal matrisli kompozitler; geri dönüşüm; mekanik karakterizasyon

Tam metin:

PDF


Referanslar


Simon L. Moraes C.A.M,. Modolo R.C.E., Vargas M., Calheiro D., Brehm F.A Recycling of contaminated metallic chip based on eco-efficiency and eco-effectiveness approaches, Journal of Cleaner Production , 1-8, 2016.

Alkaya E., Demirer G.N., Greening of production in metal processing industry through process modifications and improved management practices, Resources, Conservation and Recycling, 77, 89–96, 2013.

White K.G., ,Toward R.W., Cleaner production of hot dip galvanizing industry in China. Journal of Cleaner Production 18(10), 1092–1099, 2010.

Guley V., Khalifa N.B., Tekkaya A.E., Direct recycling of 1050 aluminium alloy scrap material mixed with 6060 aluminium alloy chips by hot extrusion, International Journal of Material Forming, Springer, 3, 853-856, 2010.

Barbosa H.P.J., Soares, D.F.S., Ribeiro S., Recycling of aluminium swarf by direct incorporation in aluminium melts, Journal of Materials Processing technollogy, 209, 5195-5203, 2009.

Aslan A., Production of metal matrix composites by recycling of waste metal chips and their mechanical properties, Ms Thesis, Selçuk University, Department of Mechanical Engineering, Konya, 2014.

Aslan A., Sahin O.S., Salur E., Gunes A., Akdemir A., Karadag H.B., A new method for recycling of metal chips, Journal of Selçuk University Natural and Applied Science, 4, 1, 2015.

Gronostajski, J., Matuszak, A., The recycling of metals by plastic deformation: an example of recycling of aluminium and its alloys chips, Journal of Materials Processing Technology, 92–93, 35–41, 1999.

Khoeia A.R., Masters I., Gethin D.T., Design optimisation of aluminium recycling processes using Taguchi technique, Journal of Materials Processing Technology, 127, 96-106, 2002.

Basak C.B., Hari Babu N., Morphological changes and segregation of β-Al9Fe2Si2 phase: A perspective from better recyclability of cast Al-Si alloys, Materials and Design, 108, 277-288, 2016.

J. Gronostajski, H. Marciniak, A. Matuszak. New methods of aluminum and aluminum alloy chips recycling, Journal of Materials Processing Technology, 106, 34-39, 2000.

J. Gronostajski, A. Matuszak. The recycling of metals by plastic deformation: an example of recycling of aluminum and its alloy’s chips. Journal of Materials Processing Technology, 92-93, 34-41, 1999.

Wu S., Ji Z., Tielei Z., Microstructure and mechanical properties of AZ31B magnesium alloy recycled by solid-state process from different size chips. Journal of Materials Processing Technology, 209, 5319–5324, 2009.

Costa C.E., Zapata W.C., Parucker M.L., Characterization of casting iron powder from recycled swarf, Journal of Materials Processing Technology, 143-144, 138-143, 2003.

Karadağ H.B., Productıon and mechanical properties of steel/bronze chips composite, PhD Thesis. Selçuk University, Department of Mechanical Engineering, Konya, 2012.

Szczepanik S., Sleboda T., The influence of the hot deformation and heat treatment on the properties of P/M Al-Cu composites, Journal of Materials Processing Technology, 60, 729-733, 1996.

Gronostajski J.Z., Kaczmar J.W., Marciniak H., Matuszak A., Direct recycling of aluminum chips into extruded product, Journal of Materials Processing Technology, 64, 149-156, 1997.

Fogagnolo J.B., Ruiz-Navas E.M., Simón M.A., Martinez M.A., Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion. Journal of Materials Processing Technology, 143–144, 792–795, 2003.

Gronostajski, J., Chamura, W., Gronostajski, Z., Bearing materials obtained by recycling of aluminium and aluminium bronze chips, Journal of Materials Processing Technology, 125-126,483-490, 2002.

El Aal M.I.A., Yoon E.Y., Kim H.S., Recycling of AlSi8Cu3 alloy chips via high pres sure torsion, Materials Science & Engineering A, 560, 121-128, 2013.

Khamisa S.S., Lajisb M.A., Albert R.A.O., A Sustainable Direct Recycling of Aluminum Chip (AA6061) in Hot Press Forging Employing Response Surface Methodology, Procedia CIRP 12th Global Conference on Sustainable Manufacturing, 26, 477 – 481, 2015.

Chiba R., Nakamura T., Kuroda M., Solid-state recycling of aluminium alloy swarf through cold profile extrusion and cold Rolling, Journal of Materials Processing Technology, 211, 1878-1887, 2011.

Tao Y., Ming-yi Z., Xiao-shi H., Kun W., Recycling of az91 mg alloy through consolidation of machined chips by extrusion and ECAP. Transactions of Nonferrous Metals Society of China, 20, 604-607, 2010.

Chino Y., Iwasaki H., Mabuchi M., Solid-state recycling for machined chips of iron by hot extrusion and annealing, Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology, Moriyama-ku, Nagoya 463-8560, Japan, 2011.

Guluzade R., Avcı A., Demirci M.T., Erkendirci Ö.F., Fructure toughness of recycled AISI 1040 steel chip reinforced ALMG1SICU aluminium chip composites, Materials and Design, 52, 345–352, 2013.

Gorji R.R., Alizadeh A., Jafari H., Microstructure and mechanical properties of stir cast ZX51/Al2O3p magnesium matrix composites, Materials Science & Engineering A 674, 413–418, 2016.

Omar M.Y., Xiang C.,a, Nikhil Gupta N., Strbik O.M., Kyu Cho K., Syntactic foam core metal matrix sandwich composite under bending conditions, Materials and Design 86, 536–544, 2015.

Hu M., Ji Z., Chen X., Zhang Z., Effect of chip size on mechanical property and microstructure

of AZ91D magnesium alloy prepared by solid state recycling, Materıals Characterization 59, 385 – 389, 2008.

R.M. German. Powder metallurgy & particulate materials processing, prentice-hall. Ttmd, 2007.

Jabur A.S., Effect of powder metallurgy conditions on the properties of porous bronze, Powder Technology 237, 477–483, 2013.

Fogagnolo J.B., Ruiz-Navas E.M., Simón M.A., Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion. Journal of Materials Processing Technology, 143–144, 792–795, 2003.

Kurt A. Boz M., Wear behaviour of organic asbestos based and bronze based powder metal brake linings, Materials & Design 26, 717-721, 2005.

Oliveira L.J.D, Bobrovnitchii G.S., Filgueira M., Processing and characterization of impregnated diamond cutting tools using a ferrous metal matrix, International Journal of Refractory Metals & Hard Materials 25, 328–335, 2007.

Barbosa A.P., Bobrovnitchii G.S., Skury A.L.D., Structure, microstructure and mechanical properties of pm fe–cu–co alloys. Materials and Design, 31, 522–526, 2010.

] Juskenas R., Mockus Z., Kanapeckaite S., Stalnionis G., Survila A., XRD studies of the phase composition of the electrodeposited copper-rich Cu–Sn alloys, Electrochimica Acta, 52, 928–935, 2006.

Binh H.B., Sunjung K., Preparation of Cu-Sn Alloy Foam by Electrodeposition in Acid Solution, Journal of The Electrochemical Society, 162, D15-D19, 2015.

W. X. Lei, Y. Pan, Y. C. Zhou, W. Zhou, M. L. Peng and Z. S. Ma, CNTs–Cu composite layer enhanced Sn–Cu alloy as high performance anode materials for lithium- ion batteries, RSC Advances, 4, 3233-3237, 2014.

El-Daly A.A., Abdelhameed M., Hashish M., Daoush W.M., Fabrication of silicon carbide reinforced aluminum matrix nanocomposites and characterization of its mechanical properties using non-destructive technique, Materials Science & Engineering A 559, 384–393, 2013.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.