Ortogonal dizinler kullanarak kimyasal buhar çöktürme yöntemi ile büyütülen grafenin ana etkiler analizi

Barış Şimşek, Ömer Faruk Dilmaç
942 88

Öz


Bu çalışmada, ortogonal dizinler kullanarak kimyasal buhar çöktürme yöntemi ile büyütülen grafenin ana etkiler analizi gerçekleştirilmiştir. Bu amaçla, etanol ve asetilen kullanarak kimyasal buhar çöktürme prosesi ile grafen sentezinde grafen kusurluluğunu temsil eden ID/IG değeri ve grafen kalınlığını temsil eden I2D/IG değeri temel yanıtlar olarak seçilmiştir. Bu yanıtlar üzerinde etkili faktörler etanolün ayrışması ile grafen sentezi için sırası ile reaktör basıncı, büyütme prosesi süresi ve soğutma tipi; asetilenin ayrışması ile grafen sentezi için sırası ile tavlama sıcaklığı, tavlama süresi, büyütme prosesi asetilen akış hızı, büyütme prosesi hidrojen akış hızı, büyütme prosesi süresi, büyütme sıcaklığı ve soğutma tipi olarak belirlenmiştir. Etanolün ayrışması için L4 (23), asetilenin ayrışması için L8 (27), ortogonal deney tasarım matrisi faktör etkilerinin tahmin edilmesi için seçilmiş ve deneyler bu deney koşumları dikkate alınarak gerçekleştirilmiştir. Grafen kusurluluğunu temsil eden ID/IG değeri ve grafen inceliğini temsil eden I2D/IG değerleri üzerinde en etkili faktörler etanolün ayrışmasında reaktör basıncı ve soğutma hızı; asetilenin ayrışmasında ise tavlama süresi, büyütme prosesi asetilen akış hızı, büyütme prosesi hidrojen akış hızı olarak belirlenmiştir. Son olarak, ana etki grafiklerinden yararlanarak her iki sentez prosesi için optimum işletim parametreleri tahmin edilmiştir.


Anahtar kelimeler


Ana etkiler analizi; Asetilen; Etanol; Grafen sentezi; Kimyasal Buhar Çöktürme Yöntemi; Ortogonal Dizinler

Tam metin:

PDF


Referanslar


Novoselov, K.S., et al., Electric field in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.

Whitener Jr, K.E. and P.E. Sheehan, Graphene synthesis. Diamond and Related Materials, 2014. 46: p. 25-34.

Charrier, A., et al., Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films. Journal of Applied Physics, 2002. 92(5): p. 2479-2484.

Berger, C., et al., Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. The Journal of Physical Chemistry B, 2004. 108(52): p. 19912-19916.

Reich, E., Nobel document triggers debate. Nature, 2010. 468.

Emtsev, K.V., et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater, 2009. 8(3): p. 203-207.

Li, X., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-1314.

Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano, 2010. 5(8): p. 574-578.

Wood, J.D., et al., Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition. Nano Letters, 2011. 11(11): p. 4547-4554.

Kwak, J., et al., Near room-temperature synthesis of transfer-free graphene films. Nat Commun, 2012. 3: p. 645.

Terasawa, T.-o. and K. Saiki, Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon, 2012. 50(3): p. 869-874.

Takatoshi, Y., et al., Low-temperature graphene synthesis using microwave plasma CVD. Journal of Physics D: Applied Physics, 2013. 46(6): p. 063001.

Zhang, Y., L. Zhang, and C. Zhou, Review of Chemical Vapor Deposition of Graphene and Related Applications. Accounts of Chemical Research, 2013. 46(10): p. 2329-2339.

Zhou, H., et al., Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat Commun, 2013. 4.

Lee, J.-H., et al., Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science, 2014. 344(6181): p. 286-289.

Yan, Z., Z. Peng, and J.M. Tour, Chemical Vapor Deposition of Graphene Single Crystals. Accounts of Chemical Research, 2014. 47(4): p. 1327-1337.

Vo, T.H., et al., Large-scale solution synthesis of narrow graphene nanoribbons. Nat Commun, 2014. 5.

Bennett, P.B., et al., Bottom-up graphene nanoribbon field-effect transistors. Applied Physics Letters, 2013. 103(25): p. 253114.

Cai, J., et al., Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010. 466(7305): p. 470-473.

Chen, C.Y., et al., Rapid growth of single-layer graphene on the insulating substrates by thermal CVD. Applied Surface Science, 2015. 346: p. 41-45.

Syed Muhammad, H., et al., Fabrication of high-quality graphene by hot-filament thermal chemical vapor deposition. Carbon, 2015. 86: p. 1-11.

Lisi, N., et al., Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol. Thin Solid Films, 2014. 571, Part 1: p. 139-144.

An, H., W.-J. Lee, and J. Jung, Graphene synthesis on Fe foil using thermal CVD. Current Applied Physics, 2011. 11(4, Supplement): p. S81-S85.

Aria, A.I., A.W. Gani, and M. Gharib, Effect of dry oxidation on the energy gap and chemical composition of CVD graphene on nickel. Applied Surface Science, 2014. 293: p. 1-11.

Aydin, O.I., et al., Interface and strain effects on the fabrication of suspended CVD graphene devices. Solid-State Electronics, 2015. 108: p. 75-83.

Bhaviripudi, S., et al., Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Letters, 2010. 10(10): p. 4128-4133.

del Campo, V., R. Henríquez, and P. Häberle, Effects of surface impurities on epitaxial graphene growth. Applied Surface Science, 2013. 264: p. 727-731.

Chen, C.-S. and C.-K. Hsieh, Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition. Thin Solid Films, 2015. 584: p. 265-269.

Choi, D.S., et al., Effect of Cooling Condition on Chemical Vapor Deposition Synthesis of Graphene on Copper Catalyst. ACS Applied Materials & Interfaces, 2014. 6(22): p. 19574-19578.

Gautam, M. and A.H. Jayatissa, Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid-State Electronics, 2012. 78: p. 159-165.

Gnanaprakasa, T.J., et al., The role of copper pretreatment on the morphology of graphene grown by chemical vapor deposition. Microelectronic Engineering, 2015. 131: p. 1-7.

Jiang, J., et al., Graphene synthesis by laser-assisted chemical vapor deposition on Ni plate and the effect of process parameters on uniform graphene growth. Thin Solid Films, 2014. 556: p. 206-210.

Lee, B.-J., S.-C. Cho, and G.-H. Jeong, Atmospheric pressure plasma treatment on graphene grown by chemical vapor deposition. Current Applied Physics, 2015. 15(5): p. 563-568.

Li, Z., et al., Copper substrate as a catalyst for the oxidation of chemical vapor deposition-grown graphene. Journal of Solid State Chemistry, 2015. 224: p. 14-20.

Mahmood, A., et al., Room temperature dry processing of patterned CVD graphene devices. Carbon, 2015. 86: p. 256-263.

Si, F.T., et al., Effects of ambient conditions on the quality of graphene synthesized by chemical vapor deposition. Vacuum, 2012. 86(12): p. 1867-1870.

Tian, J., et al., Surface structure deduced differences of copper foil and film for graphene CVD growth. Applied Surface Science, 2014. 300: p. 73-79.

Wang, Z.G., et al., Effects of methane flux on structural and transport properties of CVD-grown graphene films. Vacuum, 2012. 86(7): p. 895-898.

Wang, M., et al., CVD growth of graphene under exfoliated hexagonal boron nitride for vertical hybrid structures. Materials Research Bulletin, 2015. 61: p. 226-230.

Santangelo, S., et al., Taguchi optimized synthesis of graphene films by copper catalyzed ethanol decomposition. Diamond and Related Materials, 2014. 41: p. 73-78.

Khraisheh, M. and A. Li, Bio-ethanol from Municipal Solid Waste (MSW): The Environmental Impact Assessment, in Proceedings of the 2nd Annual Gas Processing Symposium. 2010, Elsevier: Amsterdam. p. 69-76.

Huang, H., et al., Ethanol Production from Food Waste at High Solids Content with Vacuum Recovery Technology. Journal of Agricultural and Food Chemistry, 2015. 63(10): p. 2760-2766.

Martin, W.F., J.M. Lippitt, and T.G. Prothero, Hazardous waste handbook for health and safety. 2013: Butterworth-Heinemann.

Şanyılmaz, M., Deney tasarımı ve kalite geliştirme faaliyetlerinde Taguchi yöntemi ile bir uygulama. 2006, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü: Kütahya. p. 97.

Şimşek, B., A Multi-Response Optimization and Modeling Application for Determining Optimal Mix Proportions o Ready-Mixed Concrete: Response Surface Methodology (RSM) with A TOPSIS based Taguchi Approach. 2014, Ankara University: Ankara. p. 207.

Prasad, N., et al., Current induced annealing and electrical characterization of single layer graphene grown by chemical vapor deposition for future interconnects in VLSI circuits. Applied Physics Letters, 2014. 105(11): p. 113513.

Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97(18): p. 187401.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.