Parçalı yakıt maliyeti fonksiyonlarına sahip çevresel ekonomik güç dağıtımı problemlerinin çözümüne yeni bir yaklaşım

Celal YAŞAR, serdar ÖZYÖN
390 42

Öz


Gelişen dünyada elektrik enerjisine olan ihtiyaç her geçen gün artmaktadır. Fosil yakıt kullanan elektrik üretim birimleri çevre kirliliğine yol açmaktadır. Bu nedenle optimal güç dağıtımı problemleri çözülürken çevre kirliliği de dikkate alınmalıdır. Çevre kirliliğini dikkate alan bu tür problemlere çevresel ekonomik güç dağıtımı problemleri adı verilmektedir. Bu çalışmada çok amaçlı çevresel ekonomik güç dağıtım problemi konik skalerleştirme metodu (KSM) kullanılarak tek amaçlı optimizasyon problemine dönüştürülmüştür. Skalerleştirilen problemin çözümü için genetik algoritma (GA) metodu kullanılmıştır. Uygulama için ele alınan örnekler, konveks ve konveks olmayan parçalı yakıt maliyeti fonksiyonlarına sahip üretim birimlerinden oluşan kayıplı güç sistemleridir. Örnek problemlerde farklı ağırlık değerleri için toplam yakıt maliyeti ve toplam NOx emisyon değerlerine ait en iyi çözüm değerleri elde edilmiştir (Pareto optimal değerler) ve sonuçlar tartışılmıştır.

Anahtar kelimeler


Parçalı yakıt maliyet fonksiyonları; Çevresel ekonomik güç dağıtımı; Genetik algoritma (GA); Konik skalerleştirme metodu (KSM); Pareto optimal çözümler;

Tam metin:

PDF


Referanslar


Özyön S., Genetik algoritmanın bazı çevresel ekonomik güç dağıtım problemlerine uygulanması, Yüksek Lisans Tezi, Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Kütahya, 2009.

Wood A.J. ve Wollenberg B.F., Power Generation Operation and Control, John Wiley & Sons, New York, A.B.D., 1996.

Özyön S., Temurtaş H., Durmuş B., Kuvat G., Charged system search algorithm for emission constrained economic power dispatch problem, Energy, 46, 420-430, 2012.

Aydın D., Özyön S., Yaşar C., Liao T., Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem, Int. J. Electr. Power Energy Syst., 54, 144-153, 2014.

Modiri-Delshad M., Abd Rahim N., Multi-objective backtracking search algorithm for economic emission dispatch problem, Appl. Soft Comput., 40, 479-494, 2016.

Üstün Ö., Multi-choice goal programming formulation based on the conic scalarizing function, Appl. Math. Modell., 36 (3), 974-988, 2012.

Sipahioğlu A., Saraç T., Çok amaçlı sırt çantası probleminin çözümüne yeni bir yaklaşım: Konik skalerleştirme, Endüstri Mühendisliği Dergisi, 21 (4), 2-12, 2010.

Gasimov R.N., Characterization of the Benson proper efficiency and scalarization in nonconvex vector optimization, Lect. Notes Econ. Math. Syst., 507, 189-198, 2001.

Yaşar C., Özyön S., Solution to scalarized environmental economic power dispatch problem by using genetic algorithm, Int. J. Electr. Power Energy Syst., 38 (1), 54-62, 2012.

Yaşar C., A pseudo spot price of electricity algorithm applied to environmental economic active power dispatch problem, Turk. J. Elec. Eng. and Comp. Sci., 20, (6), 990-1005, 2012.

Abou El Ela A.A., Abido M.A., Spea S.R., Differential evolution algorithm for emission constrained economic power dispatch problem, Electr. Power Syst. Res., 80 (10), 1286-1292, 2010.

Bhattacharya A., Chattopadhyay P.K., Solving economic emission load dispatch problems using hybrid differential evolution, Appl. Soft Comput., 11 (2), 2526-2537, 2011.

Bhattacharya A., Chattopadhyay P.K., Hybrid differential evolution with biogeography-based optimization algorithm for solution of economic emission load dispatch problems, Expert Syst. Appl., 38 (11), 14001-14010, 2011.

Rajasomashekar S., Aravindhababu P., Biogeography based optimization technique for best compromise solution of economic emission dispatch, Swarm Evol. Comput., 7, 47-57, 2012.

Özyön S., Yaşar C., Durmuş B., Temurtaş H., Opposition-based gravitational search algorithm applied to economic power dispatch problems consisting of thermal units with emission constraints, Turk. J. Electr. Eng. Comput. Sci., 23, 2278-2288, 2015.

Palanichamy C., Babu N.S., Analytical solution for combined economic and emissions dispatch, Electr. Power Syst. Res., 78 (7), 1129-1137, 2008.

Abdelaziz A.Y., Ali E.S., Abd Elazim S.M., Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems, Energy, 101, 506-518, 2016.

Panigrahi B.K., Ravikumar Pandi V., Das S., Das S., Multiobjective fuzzy dominance based bacterial foraging algorithm to solve economic emission dispatch problem, Energy, 35 (12), 4761-4770, 2010.

Hota P.K., Barisal A.K., Chakrabarti R., Economic emission load dispatch through fuzzy based bacterial foraging algorithm, Int. J. Electr. Power Energy Syst., 32 (7), 794-803, 2010.

Hazra J., Sinha A.K., A multi-objective optimal power flow using particle swarm optimization, Eur. Trans. Electr. Power, 21 (1), 1028-1045, 2011.

Zhang Y., Gong D., Ding Z., A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch, Information Sciences, 192, 213-227, 2012.

Cai J., Ma X., Li Q., Li L., Peng H., A multi-objective chaotic particle swarm optimization for environmental/economic dispatch, Energy Convers. Manage., 50 (5), 1318-1325, 2009.

Gong D., Zhang Y., Qi C., Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm, Int. J. Electr. Power Energy Syst., 32 (6), 607-614, 2010.

Liu T., Jiao L., Ma W., Ma J., Shang R., Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch, Appl. Soft Comput., 48, 597-611, 2016.

Basu M., Economic environmental dispatch using multi-objective differential evolution, Appl. Soft Comput., 11 (2), 2845-2853, 2011.

Lu Y., Zhou J., Qin H., Wang Y., Zhang Y., Environmental/economic dispatch problem of power system by using an enhanced multi-objective differential evolution algorithm, Energy Convers. Manage., 52, 1175-1183, 2011.

Zhang H., Yue D., Xie X., Hu S., Weng S., Multi-elite guide hybrid differential evolution with simulated annealing technique for dynamic economic emission dispatch, Appl. Soft Comput., 34, 312-323, 2015.

Alawode K.O., Jubril A.M., Komolafe O.A., Multiobjective optimal power flow using hybrid evolutionary algorithm, Int. J. Electr. Electron. Eng., 4 (7) 506-511, 2010.

Dhanalakshmi S., Kannan S., Mahadevan K., Baskar S., Application of modified NSGA-II algorithm to combined economic and emission dispatch problem, Int. J. Electr. Eng. Comput., 33 (4), 992-1002, 2011.

Guo C.X., Zhan J.P., Wu Q.H., Dynamic economic emission dispatch based on group search optimizer with multiple producers, Electr. Power Syst. Res., 86, 8-16, 2012.

Cai J., Ma X., Li Q., Li L., Peng H., A multi-objective chaotic ant swarm optimization for environmental/economic dispatch, Int. J. Electr. Power Energy Syst., 32 (5), 337-344, 2010.

Abido M.A., Multiobjective particle swarm optimization for environmental economic dispatch problem, Electr. Power Syst. Res., 79 (7), 1105-1113, 2009.

Agrawalo S., Panigrahi B.K., Tiwari M.K., Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch, IEEE Trans. Evol. Comput., 12 (5), 529-541, 2008.

Abido M.A., Multiobjective evolutionary algorithm for electric power dispatch problem, IEEE Trans. Evol. Comput., 10 (3), 315-329, 2006.

Abido M.A., A novel multiobjective evolutionary algorithm for environmental economic power dispatch, Electr. Power Syst. Res., 65, 71-81, 2003.

Abido M.A., A niched pareto genetic algorithm for multiobjective environmental economic power dispatch, Int. J. Electr. Power Energy Syst., 25 (2), 97-105, 2003.

Ah King R.T.F., Rughooputh H.C.S., Deb K., Evolutionary multi-objective environmental/economic dispatch: Stochactic vs. deterministic approaches, Lect. Notes Comput. Sci., 34 (10):677-691, 2005.

Abido M.A., Environmental/economic power dispatch using multiobjective evolutionary algorithms, IEEE Trans. Power Syst., 18 (4), 1529-1537, 2003.

Niknam T., Narimani M.R., Jabbari M., Malekpour A.R., A modified shuffle frog leaping algorithm for multi-objective optimal power flow, Energy, 36, 6420-6432, 2011.

Gasimov R.N., Sipahioğlu A., Saraç T., A multi-objective programming approach to 1.5- dimensional assortment problem, Eur. J. Oper. Res., 179 (7-8), 64-79, 2007.

İsmayilova N.A., Sağır M., Gasimov R.N., A multi-objective faculty-course-time slot assigment problem with preferences, Math. Comput. Modell., 46 (2), 1017-1029, 2007.

Özdemir M.S., Gasimov R.N., The analytic hierarchy process and multiobjective 0-1 faculty course assignment, Eur. J. Oper. Res., 157 (1), 398-408, 2004.

Goldberg D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Company, 1989.

http://shodhganga.inflibnet.ac.in/bitstream/10603/1221/18/18_appendix.pdf




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.