Faz değişim malzemeli ısı değiştirici üzerine parametrik bir çalışma

Mustafa Asker, Hüseyin Günerhan
1.354 351

Öz


Bu çalışmada, boruları düşey konumda olan gövde boru tipi bir ısı değiştiricide, borular içinde 23°C sıcaklıkta ergiyebilen faz değişim malzemesi bulunan bir sistem ele alınmıştır. Isı transfer akışkanı olan hava sisteme fan aracılığıyla sağlanmıştır. Bu çalışmada öncelikle faz değişim malzemeli ısı değiştiricinin tasarımına ilişkin sayısal bir yöntem geliştirilmiş ve elde edilen sonuçlar daha önce yapılan analitik yöntemin sonuçları ile karşılaştırılmıştır. Daha sonra, faz değişim malzemeli ısı değiştiricinin hacmi sabit tutulmuş ve sistem üzerinde parametrik bir çalışma yapılmıştır. Boru aralığı değişimi, hava debisi (fan hızı) değişimi ve faz değişim malzemesi değişken parametreler olarak ele alınmıştır. Boru sayısı akışa dik yönde iki kat arttığında toplam ergime zamanı tüm dört aralık durumu için ortalama olarak %38 oranında azalmıştır.

Anahtar kelimeler


Faz değişim malzemeleri, ısı değiştirici, ergime zamanı

Tam metin:

PDF


DOI: http://dx.doi.org/10.17341/gummfd.76037

Referanslar


Zalba B., Marin J.M., Cabeza L.F., Mehling H., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl. Therm. Eng., 23 (2), 251–283, 2003.

Saito A., Recent advances in research on cold thermal energy storage, Int. J. Refrig. 25 (2), 177–189, 2002.

Garg HP., Solar Thermal Energy Storage, Springer 1985.

Zhao D., Tan G., Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application, Appl. Energy, 138, 381–392, 2015.

Navarro L., de Gracia A., Colclough S., Browne M., McCormack S.J., Griffiths P., Cabeza L.F., Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems, Renewable Energy, 88, 526-547, 2016.

Navarro L., de Gracia A., Colclough S., Browne M., McCormack S.J., Griffiths P., Cabeza L.F., Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system, Renewable Energy, 85, 1334-1356, 2016.

Ercoşkun G.T., Keskin A., Gürü M., Altıparmak D., Investigation of designing, manufacturing and performance of double- grooved parabolic trough-type solar collector Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (4), 855-863, 2013.

Yıldız Y., Analysis of performance of night ventilation for residential buildings in hot-humid climates Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (2), 385-393, 2014.

Çakır M.T., Improving the efficiency performance of heat pipes using alumina containing Nano-fluids, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (4), 547-556, 2015.

Dincer I., Rosen M.A., Thermal Energy Storage: Systems and Applications, Wiley, U.K. 2002.

Li G., Zheng X., Thermal energy storage system integration forms for a sustainable future, Renewable Sustainable Energy Rev., 62, 736–757, 2016.

Dietz D., Thermal Performance of a Heat Storage Module Using Calcium Chloride Hexahydrate, J. Sol. Energy Eng., 106 (1), 106-111, 1983.

Farid M.M., Kanzawa A., Thermal performance of a heat storage module using PCMs with different melting temperatures: mathematical modeling, J. Sol. Energy Eng., 111, 152–157, 1989.

Lacroix M., Numerical solution of a shell and tube latent heat thermal energy storage unit, Sol. Energy, 50 (4), 357-367, 1993.

Esen M., Ayhan T., Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials, Energy Convers. Manage., 37 (12), 1775–85, 1996.

Turnpenny J.R., Etheridge D.W., Reay D.A., Novel ventilation cooling system for reducing air conditioning in buildings I. testing and theoretical modeling, Appl. Therm. Eng., 20 (11), 1019–1038, 2000.

Turnpenny J.R., Etheridge D.W., Reay D.A., Novel ventilation cooling system for reducing air conditioning in buildings II. testing of a prototype, Appl. Therm. Eng., 21 (12), 1203–1217, 2000.

Vakilaltojjar S.M., Saman W., Analysis and modeling of a phase change storage system for air conditioning applications, Appl. Therm. Eng., 21 (3), 24-63, 2001.

Mozhevelov S., Cooling of structures by a phase change material (PCM) in Natural and Forced Convection M.Sc. thesis, Mechanical Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel 2004.

Mozhevelov S., Ziskind G., Letan R., Numerical study of temperature moderation in a real size room by PCM-based units, Heat-SET, Heat Transfer in Components and Systems for Sustainable Energy Technologies, Grenoble, France, April 5–7, 2005.

Arye G., Guedj R., A PCM-based Conditioner, final report 13-04, Heat Transfer Laboratory, Mechanical Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel 2004.

Kozak Y., Abramzon B., Ziskind G., Experimental and numerical investigation of a hybrid PCM-air heat sink, Appl. Therm. Eng., 59 (1-2), 142-152, 2013.

Letan, R., Ziskind G., Thermal design and operation of a portable PCM cooler, Heat Transfer Calculations, in M. Kutz, ed. McGraw-Hill, New York, chapter 39, 2006.

Dubovsky V., Ziskind G., Letan R., Analytical model of a PCM air heat exchanger, Appl. Therm. Eng., Cilt 31, 3453-3462, 2011.

Ezra M., Kozak Y., Dubovsky V., Ziskind G., Analysis and optimization of melting temperature span for a multiple PCM latent heat thermal energy storage unit, Appl. Therm. Eng., 93, 315-329, 2016.

Holman, J.P., Heat Transfer, Ninth Edition, McGraw-Hill, New York, 2009.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.