Stokastik sınır analizi kullanarak rüzgâr türbinleri için etkinlik değerlendirmesi

Harika AKALIN, Serap ULUSAM SEÇKİNER, Yunus EROĞLU
1.237 203

Öz


Bu çalışmada, Stokastik Sınır Analizi (SSA) tekniği, hâlihazırda işletmede olan bir rüzgâr çiftliğinde üretim etkinliğini ölçmek için kullanılmıştır. Mevcut literatürde çeşitli alanlarda yaygın olarak uygulanan bir etkinlik ölçüm tekniği olan SSA, rüzgâr türbinlerinin etkinlik ölçümlerinde daha önce kullanılmamıştır. SSA’nın stokastik yapısı, sınır sapmalarının hem işletmenin kontrolünde olmayan dış etkileri hem de teknik etkinsizliği içermesi onun anahtar özelliğidir. Önerilen yaklaşım, dört farklı senaryo altında her bir türbinin birbirlerine göre etkinliklerini ve rüzgâr çiftliğinin tamamının etkinliğini hesaplamak için kullanılmıştır. Bu senaryolar, çeşitli girdi parametrelerinin etkinlik üzerindeki etkisini ölçmek için oluşturulmuştur. Dolayısıyla, bu çalışmanın diğer bir amacı da farklı girdi senaryoları ile bir rüzgâr türbininin etkinliğini ölçmek için hangi faktörlerin ne kadar etkili olduğunu açıklamaktır. Ayrıca, bu dört senaryo, aylık ortalama veriler, on iki aylık veriler ve yirmi dört aylık veriler olmak üzere üç farklı zaman periyodunda çalışılmıştır. Çalışmanın sonucunda farklı girdi gruplarına göre farklı etkinlik skorları elde edilmiştir. Etkinlik kayıplarının istatiksel sapmadan mı yoksa etkinsizlikten mi kaynaklandığı SSA yönteminin avantajı gereği yorumlanabilmiştir.

Anahtar kelimeler


Rüzgâr türbini; performans değerlendirme; Stokastik sınır analizi

Tam metin:

PDF


Referanslar


WWEA, The World Wind Energy Association (WWEA) Half Year Report 2014, http://www.wwindea.org/wwea-publishes-half-year-report-2014/. Yayın tarihi Eylül 2014.Erişirm tarihi Mart 29, 2016

Da Rosa, A.V., Fundamentals of renewable energy processes. Elsevier, Amsterdam, 2013.

Eroğlu, Y., Seçkiner, S.U., Performance analysis in wind farms by data envelopment analysis and Malmquist Index approaches. Pamukkale Univ. J. Eng. Sci. Article in press, 2016.

GWEC, Global Wind Report - Annual Market Update 2015, http://www.gwec.net/wp-content/uploads/vip/GWEC-Global-Wind-2015-Report_April-2016_22_04.pdf. Yayın tarihi Nisan 19 2014.Erişirm tarihi Nisan 21, 2016.

Turkish Wind Energy Association, Turkish Wind Energy Statistics Report, http://www.tureb.com.tr/files/bilgi_bankasi/turkiye_res_durumu/2016_turkiye_ruzgar_enerji_istatistik_raporu_ocak_2016.pdf. Yayın tarihi Ocak 2016.Erişirm tarihi Ağustos 9, 2016

Yang, W., Tavner, P.J., Crabtree, C.J., Feng, Y., Qiu, Y., Wind turbine condition monitoring, technical and commercial challenges. Wind Energy. 17, 673–693, 2014.

Eroğlu, Y., Seçkiner, S.U., Trend Topic Analysis for Wind Energy Researches, A Data Mining Approach Using Text Mining. J. Technol. Innov. Renew. Energy. 5, 44–58, 2016.

Denholm, P., Kulcinski, G.L., Holloway, T., Emissions and Energy Efficiency Assessment of Baseload Wind Energy Systems. Environ. Sci. Technol. 39, 1903–1911, 2005.

Zhang, H., Tolbert, L.M., Efficiency Impact of Silicon Carbide Power Electronics for Modern Wind Turbine Full Scale Frequency Converter. IEEE Trans. Ind. Electron. 58, 21–28, 2011.

De Prada Gil, M., Gomis-Bellmunt, O., Sumper, A., Bergas-Jané, J., Power generation efficiency analysis of offshore wind farms connected to a SLPC (single large power converter) operated with variable frequencies considering wake effects. Energy. 37, 455–468, 2012.

Najar, F.A., Harmain, G.A., Blade Design and Performance Analysis of Wind Turbine. In, International Conference on Global Scenario in Environment and Energy. International Journal of ChemTech Research, 1054–1061, 2013.

Jiang, H., Li, Y., Cheng, Z., Performances of ideal wind turbine. Renew. Energy. 83, 658–662, 2015.

Chehouri, A., Younes, R., Ilinca, A., Perron, J., Review of performance optimization techniques applied to wind turbines. Appl. Energy. 142, 361–388, 2015.

El-Baz, A.R., Youssef, K., Mohamed, M.H., Innovative improvement of a drag wind turbine performance. Renew. Energy. 86, 89–98, 2016.

Astolfi, D., Castellani, F., Garinei, A., Terzi, L., Data mining techniques for performance analysis of onshore wind farms. Appl. Energy. 148, 220–233, 2015.

Uluyol, Ö., Parthasarathy, G., Foslien, W., Kim, K., Power Curve Analytic for Wind Turbine Performance Monitoring and Prognostics. In, Annual Conference of the Prognostics and Health Management Society. 1–8., 2011.

Carrillo, C., Obando Montaño, A.F., Cidrás, J., Díaz-Dorado, E., Review of power curve modelling for wind turbines. Renew. Sustain. Energy Rev. 21, 572–581, 2013.

Lydia, M., Kumar, S.S., Selvakumar, A.I., Prem Kumar, G.E., A comprehensive review on wind turbine power curve modeling techniques. Renew. Sustain. Energy Rev. 30, 452–460, 2014.

Milan, P., Wächter, M., Peinke, J., Stochastic modeling and performance monitoring of wind farm power production. J. Renew. Sustain. Energy. 6, 33119, 2014.

Herp, J., Poulsen, U.V., Greiner, M., Wind farm power optimization including flow variability. Renew. Energy. 81, 173–181, 2015.

Kusiak, A., Verma, A., Monitoring Wind Farms With Performance Curves. IEEE Trans. Sustain. Energy. 4, 192–199, 2013.

Verma, A., Performance monitoring of wind turbines , a data-mining approach. Doktora Tezi, University of Iowa, Iowa, 2012.

Wagner, R., Antoniou, I., Pedersen, S.M., Courtney, M.S., Jørgensen, H.E., The influence of the wind speed profile on wind turbine performance measurements. Wind Energy. 12, 348–362, 2009.

Al-Hadhrami, L.M., Performance evaluation of small wind turbines for off grid applications in Saudi Arabia. Energy Convers. Manag. 81, 19–29, 2014.

Barthelmie, R.J., Jensen, L.E., Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy. 13, 573–586, 2010.

Pieralli, S., Ritter, M., Odening, M., Efficiency of wind power production and its determinants. Energy. 90, Part 1, 429–438, 2015.

Krokoszinski, H.-J., Efficiency and effectiveness of wind farms—keys to cost optimized operation and maintenance. Renew. Energy. 28, 2165–2178, 2003.

Bortolini, M., Gamberi, M., Graziani, A., Manzini, R., Pilati, F., Performance and viability analysis of small wind turbines in the European Union. Renew. Energy. 62, 629–639, 2014.

Zhang, Z., Performance optimization of wind turbines, Phd, University of Iowa, 2012.

Eroğlu, Y., Seçkiner, S.U., Design of wind farm layout using ant colony algorithm. Renew. Energy. 44, 53–62, 2012.

Eroğlu, Y., Seçkiner, S.U., Wind farm layout optimization using particle filtering approach. Renew. Energy. 58, 95–107 ,2013.

Lo, S.-F., Wu, C.-Y., Evaluating the performance of wind farms in China, An empirical review. Int. J. Electr. Power Energy Syst. 69, 58–66, 2015.

Sarıca, K., Or, I., Efficiency assessment of Turkish power plants using data envelopment analysis. Energy. 32, 1484–1499, 2007.

San Cristóbal, J.R., A multi criteria data envelopment analysis model to evaluate the efficiency of the Renewable Energy technologies. Renew. Energy. 36, 2742–2746, 2011.

Ardente, F., Beccali, M., Cellura, M., Lo Brano, V., Energy performances and life cycle assessment of an Italian wind farm. Renew. Sustain. Energy Rev. 12, 200–217, 2008.

Iglesias, G., Castellanos, P., Seijas, A., Measurement of productive efficiency with frontier methods, A case study for wind farms. Energy Econ. 32, 1199–1208, 2010.

Kusiak, A., Verma, A., Wei, X., Wind turbine capacity frontier from SCADA. Wind System Magazine. 3(9), 36- 39, 2012.

Aigner, D., Lovell, C.A.K., Schmidt, P., Formulation and estimation of stochastic frontier production function models. J. Econom. 6, 21–37, 1977.

Meeusen, W., van Den Broeck, J., Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. Int. Econ. Rev. 18, 435–444, 1977.

Zhou, P., Ang, B.W., Zhou, D.Q., Measuring economy-wide energy efficiency performance, A parametric frontier approach. Appl. Energy. 90, 196–200, 2012.

Hu, J.-L., Honma, S., A Comparative Study of Energy Efficiency of OECD Countries, An Application of the Stochastic Frontier Analysis. Energy Procedia. 61, 2280–2283, 2014.

Yu, F.W., Chan, K.T., Yang, J., Sit, R.K.Y., Comparative study on the energy performance of chiller system in an institutional building with stochastic frontier analysis. Energy Build. 89, 206–212, 2015.

Lin, B., Long, H., A stochastic frontier analysis of energy efficiency of China’s chemical industry. J. Clean. Prod. 87, 235–244, 2015.

Battese, G.E., Coelli, T.J., A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 20, 325–332, 1995.

Battese, G.E., Corra, G.S., Estimation of a Production Frontier Model, With Application to the Pastoral Zone of Eastern Australia. Aust. J. Agric. Econ. 21, 169–179, 1977.

Coelli, T.J., A guide to FRONTIER version 4.1, a computer program for stochastic frontier production and cost function estimation. CEPA Work. Pap. 7, 1–96, 1996.

Cordeiro, J.J., Sarkis, J., Vazquez-Brust, D., Frater, L., Dijkshoorn, J., An evaluation of technical efficiency and managerial correlates of solid waste management by Welsh SMEs using parametric and non-parametric techniques. J. Oper. Res. Soc. 63, 653–664, 2012.

Jacobs, R., Smith, P.C., Street, A., Measuring Efficiency in Health Care, Analytic Techniques and Health Policy. Cambridge University Press, 2006.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.