KİŞİSEL VERİLERİN KORUNMASINDA ÖZNİTELİK TABANLI GİZLİLİK ETKİ DEĞERLENDİRMESİ YÖNTEMİ

Hidayet TAKÇI, Pelin CANBAY
980 125

Öz


Kişisel veriler öncelikli olarak korunması gereken hassas bilgi varlıklarıdır. Bugüne kadar kişisel verilerin korunabilmesi için gizliliği koruyan kurallar, rehberler ve tasarımlar geliştirilmiştir. Özellikle son zamanlarda Gizlilik Etki Değerlendirmesi yöntemleri Avrupa ülkelerinde büyüyen bir ilgiyle geliştirilmektedir. Bununla birlikte gelişen bilgi teknolojileri bu düzenlemeleri yetersiz bırakmaktadır. Bu çalışmada kişisel verilerin korunması amacıyla öznitelik tabanlı yeni bir Gizlilik Etki Değerlendirmesi yöntemi önerilmektedir. Çalışma, kişisel verilerin korunması alanında genel yaklaşım olan verilerin bütününü değerlendirmek yerine öznitelik bazında veri setinin gizlilik etkisini değerlendirmeye dayalıdır. Öznitelik bazında hesaplamalar ile kişisel verilerin daha hassas ve gizli kalması gereken bölümleri belirlenebilecek ve gizlenebilecektir. Gizlilik etki değerlendirme hesaplamaları için veri homojenliği yöntemi tercih edilmiştir. Çalışmanın çıktısı gizlilik etkisine göre gruplanmış veri öğeleridir. Önerimize göre daha homojen veri daha hassas veridir ve gizliliği daha önemlidir. Önerilen yöntem iki farklı veri kümesi üzerinde test edilmiş ve elde edilen sonuçlar analiz edilmiştir. Çalışmamızın en önemli bulgusu gizli görünmeyen niteliklerin nitelik birleştirme sonrası gizli olabilmesidir.


Anahtar kelimeler


Gizlilik; homojenlik; hassasiyet; gruplama

Tam metin:

PDF


Referanslar


Warren S.D., and Brandeis L.D., The right to privacy. Harvard law review, p. 193-220, 1890.

Van Den Hoven J., Blaauw M., Pieters W. and Warnier M., "Privacy and Information Technology", The Stanford Encyclopedia of Philosophy, URL = , 2016.

DeCew J.W., In pursuit of privacy: Law, ethics, and the rise of technology, Cornell University Press, 1997.

Svantesson D., Clarke R., Privacy and consumer risks in cloud computing. Computer Law & Security Review 26(4): p. 391-397, 2010.

Pieters W., On thinging things and serving services: technological mediation and inseparable goods. Ethics and information technology, 15(3): p. 195-208, 2013.

Friedman B., Kahn Jr P. H., Borning A., Value sensitive design and information systems, in Early engagement and new technologies: Opening up the laboratory, Springer. p. 55-95, 2013.

Cavoukian A., Taylor S., Abrams M.E., Privacy by Design: essential for organizational accountability and strong business practices. Identity in the Information Society, 3(2): p. 405-413, 2010.

Wright D., De Hert P., Introduction to privacy impact assessment, in Privacy Impact Assessment, Springer. p. 3-32, 2012.

Wright D., The state of the art in privacy impact assessment. Computer Law & Security Review, 28(1): p. 54-61, 2012.

Wright D., Mordini E., Privacy and ethical impact assessment, in Privacy impact assessment, Springer. p. 397-418, 2012.

Seto Y., Application of Privacy Impact Assessment in the Smart City. Electronics and Communications in Japan, 98(2): p. 52-61, 2015.

Warren A., Charlesworth A., Privacy impact assessment in the UK, in Privacy Impact Assessment, Springer. p. 205-224, 2012.

Gellman R., Fair information practices: A basic history. Available at SSRN 2415020, 2015.

Canbay, P., Sağlık Hizmetlerinde Anonimlik: Dağıtık Yapılar Için Ideal Bir Veri Paylaşım Modeli, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü. Hacettepe Üniversitesi: Ankara, 2014.

Fung, B., Wang K., Chen R., Yu P. S., Privacy-preserving data publishing: A survey of recent developments. ACM Computing Surveys (CSUR), 42(4): p. 14, 2010.

Canbay P., Sever H., The Effect of Clustering on Data Privacy, IEEE 14th International Conference on Machine Learning and Applications (ICMLA), 2015.

Aggarwal C.C., Philip S.Y., A general survey of privacy-preserving data mining models and algorithms, in Privacy-preserving data mining. Springer. p. 11-52, 2008.

Clifton C., Kantarcioglu M., Vaidya J., Lin X., Zhu M. Y., Tools for privacy preserving distributed data mining. ACM Sigkdd Explorations Newsletter, 4(2): p. 28-34, 2002.

Hansen M., Berlich P., Camenisch J., Claub S., Pfitzmann A., Waidner M., Privacy-enhancing identity management. Information security technical report, 9(1): p. 35-44, 2004.

UGUR A., SOGUKPINAR I., Sustainable Authorization in Enterprise Workflow and Authorized Digital Signature Model. Journal of the Faculty of Engineering and Architecture of Gazi University, 29(3): p. 559-568, 2014.

TÜİK, Türkiye İstatistik Kurumu Nüfus istatistikleri 2009 verileri 2009: www.tuik.gov.tr.

Frank A., Asuncion A., UCI Machine Learning Repository. 2010, Irvine, CA: University of California, School of Information and Computer Science: http://archive.ics.uci.edu/ml.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.