METANIN KURU REFORMLANMA REAKSİYONUNDA İNDİRGEME VE REAKSİYON SICAKLIKLARININ MEZOGÖZENEKLİ ALÜMİNA DESTEKLİ NİKEL KATALİZÖRLERİN AKTİVİTELERİNE VE KARBON OLUŞUMUNA ETKİLERİ

Hüseyin ARBAĞ, Sena YAŞYERLİ, Nail YAŞYERLİ, Gülşen DOĞU, Timur DOĞU
753 125

Öz


Bu çalışmada reaksiyon sıcaklığının ve reaksiyon öncesi katalizör hazırlama basamaklarından biri olan indirgeme sıcaklığının katalizörün aktivitesine ve karbon oluşumuna etkisi incelenmiştir. Çalışmada yüksek yüzey alanına sahip mezogözenekli alümina malzemesi sol-jel yöntemiyle hazırlanmıştır. Farklı oranlarda nikel içerikli (kütlece %16 ve %8) katalizörler tek-kap ve emdirme yöntemiyle hazırlanarak farklı indirgeme sıcaklarında (550 oC ve 750 oC) indirgenmişlerdir. Metanın kuru reformlanma reaksiyonları 600 oC ve 750 oC sıcaklıkta dolgulu kolon reaktör sisteminde yürütülmüşlerdir. İndirgeme sıcaklığının katalizör yapısındaki nikelin oksidasyon değerliğini ve kristal boyutunu etkileyerek metan dönüşümünü ve hidrojen seçiciliğini artırdığı belirlenmiştir. Yüksek reaksiyon sıcaklıklarında metanın kuru reformlanma reaksiyonu paralelinde gerçekleşen RWGS ve karbon oluşum reaksiyonları azaltılabilmektedir.


Anahtar kelimeler


Metanın kuru reformlanma reaksiyonu, mezogözenekli alümina, indirgeme sıcaklığı, reaksiyon sıcaklığı, nikel

Tam metin:

PDF


Referanslar


National Academy of Sciences, Methane Generation from Human, Animal and Agricultural Waste, Washington D.C., 1977.

Sibisi, N.T., Green, J.M., "A Floating Dome Biogas Digester: Perceptions of Energising a Rural School in Maphephetheni, Kwazulu-Natal", Journal of Energy in Southern Africa, 16, 3, 45-52, 2005.

Lapp, H.M., Schulte, D.D., Sparling, A.B., Buchanan, L.C., "Methane Production from Animal Wastes. I. Fundamental Considerations", Canadian Agricultural Engineering, 17, 2, 97-102, 1975.

Luyben, W.L., "Control of Parallel Dry Methane and Steam Methane Reforming Processes For Fischer–Tropsch Syngas", Journal of Process Control, 39, 77–87, 2016.

Zonetti, P.C., Gaspar, A.B., Mendes, F.M.T., Sobrinho, E.V., Sousa-Aguiar, E. F., Appel L.G., "Fischer–Tropsch Synthesis and the Generation of DME in Situ", Fuel Processing Technology, 91, 469–475, 2010.

Kathiraser, Y., Oemar, U., Saw, E.T., Li, Z., Kawi, S., "Kinetic and Mechanistic Aspects for CO2 Reforming of Methane over Ni Based Catalysts", Chemical Engineering Journal, 278, 62–78, 2015.

Jafarbegloo, M., Tarlani, A., Mesbah, A.W., Sahebdelfar, S., "Thermodynamic Analysis of Carbon Dioxide Reforming of Methane and Its Practical Relevance", Int. J. Hydrogen Energy, 40, 2445-2451, 2015.

Usman M., Wan Daud W.M.A., Abbas H.F., "Dry Reforming Of Methane: Influence of Process Parameters—A Review", Renewable and Sustainable Energy Reviews, 45, 710–744, 2015.

Alipour, Z., Rezaei, M., Meshkani, F., "Effect of Alkaline Earth Promoters (MgO, CaO, and BaO) on the Activity and Coke Formation of Ni Catalysts Supported on Nanocrystalline Al2O3 in Dry Reforming of Methane", Journal of Industrial and Engineering Chemistry, 20, 2858–2863, 2014.

Yu, M., Zhu, Y.A., Lu, Y., Tong, G., Zhu, K., Zhou, X., "The Promoting Role of Ag in Ni-CeO2 Catalyzed CH4-CO2 Dry Reforming Reaction", Applied Catalysis B: Environmental, 165, 43–56, 2015.

Hou, Z., Chen, P., Fang, H., Zheng, X., Yashima, T., "Production of Synthesis Gas via Methane Reforming with CO2 on Noble Metals and Small Amount of Noble-(Rh-) Promoted Ni Catalysts", Int. J. Hydrogen Energy, 31, 555 – 561, 2006.

Wisniewski, M., Bore´ave, A., Ge´lin, P., "Catalytic CO2 Reforming of Methane over Ir/Ce0.9Gd0.1O2_x", Catalysis Communications, 6, 596–600, 2005.

Djinovic, P., Batista, J., Pintar, A., "Efficient Catalytic Abatement of Greenhouse Gases: Methane Reforming with CO2 Using a novel and Thermally Stable Rh-CeO2 Catalyst", Int. J. Hydrogen Energy, 37, 2699-2707, 2012.

Coelho, D.C., Oliveira, A.C., Filho, J.M., Oliveira, A.C., Lucredio, A.F., Assaf, E.M., Rodríguez-Castellón E., "Effect of the Active Metal on the Catalytic Activity of the Titanate Nanotubes for Dry Reforming of Methane", Chemical Engineering Journal, 290, 438–453, 2016.

Li D., Nakagawa Y., Tomishige K., "Methane Reforming to Synthesis Gas over Ni Catalysts Modified with Noble Metals", Applied Catalysis A: General, 408, 1–24, 2011.

Rezaei, M., Alavi, S. M., Sahebdelfar, S., Yan Z.F., "Syngas Production by Methane Reforming with Carbon Dioxide on Noble Metal Catalysts", Journal of Natural Gas Chemistry, 15, 327-334, 2006.

Arbag, H.,Yasyerli, S.,Yasyerli, N., Dogu, G., "Activity And Stability Enhancement of Ni-MCM-41 Catalysts by Rh Incorporation for Hydrogen from Dry Reforming of Methane", Int. J. Hydrogen Energy, 35, 6, 2296-2304, 2010.

Yasyerli, S., Filizgok, S., Arbag, H., Yasyerli, N., Dogu, G., "Ru Incorporated Ni-MCM-41 Mesoporous Catalysts for Dry Reforming of Methane: Effects of Mg Addition, Feed Composition and Temperature", Int. J. Hydrogen Energy, 36, 4863-4874, 2011.

Djinovic, P., Crnivec, I.,G., Erjavec, B., Pintar, A., "Influence of Active Metal Loading and Oxygen Mobility on Coke-Free Dry Reforming of Ni-Co Bimetallic Catalysts", Applied Catalysis B, 125, 259-270, 2012.

Luisetto, I., Tuti, S., Bartolomeo, E.D., "Co and Ni Supported on CeO2 as Selective Bimetallic Catalyst for Dry Reforming of Methane", Int. J. Hydrogen Energy, 37, 15992-15999, 2012.

Zhang, J., Wang, H., Dalai, A.K., "Development of Stable Bimetallic Catalysts for Carbon Dioxide Reforming of Methane", J. Catal. 249, 300-310, 2007.

Fan M.S., Abdullah, A.Z., Bhatia, S., "Utilization of Greenhouse Gases Through Carbon Dioxide Reforming of Methane over Ni–Co/MgO–ZrO2: Preparation, Characterization and Activity Studies", Appl. Catal. B: Environ., 100, 365-377, 2010.

Zhang, X., Yang, C., Zhang, Y., Xu, Y., Shang, S., Yin, Y., "Ni-Co Catalyst Derived From Layered Double Hydroxides for Dry Reforming of Methane", Int. J. Hydrogen Energy, 40, 16115-16126, 2015.

Ozkara-Aydinoglu, S., Ozensoy, E., Aksoylu, E., A., "The Effect of Impregnation Strategy on Methane Dry Reforming Activity of Ce Promoted Pt/ZrO2", Int. J. Hydrogen Energy, 34, 9711-9722, 2009.

Ozkara-Aydinoglu, S., Aksoylu, E., "Carbon Dioxide Reforming of Methane over Co- X/ZrO2 Catalysts (X=La, Ce, Mn, Mg, K)" , Catalysis Communications, 11, 1165- 1170, 2010.

Darujati, A.R.S., Thomson, W.J., "Stability of Supported and Promoted-Molybdenum Carbide Catalysts in Dry-Methane Reforming", Applied Catalysis A: General, 296, 139–147, 2005.

Luna, A.E.C., M.E. Iriarte, "Carbon Dioxide Reforming of Methane over a Metal Modified Ni-Al2O3 Catalyst", Applied Catalysis A: General, 343, 10–15, 2008.

Nagaoka K., Takanabe K., Aika K., "Influence of the Reduction Temperature on Catalytic Activity of Co/TiO2 (anatase-type) for High Pressure Dry Reforming of Methane", Applied Catalysis A: General, 255 (2003) 13–21.

Fidalgo, B., Zubizarreta, L., Bermúdez, J.M., Arenillas, A., Menéndez, J.A., "Synthesis of Carbon-Supported Nickel Catalysts for the Dry Reforming of CH4", Fuel Processing Technology, 91, 765–769, 2010.

Fakeeha, A.H., Khan, W.U., Al‐Fatesh, A.S., Abasaeed, A.E., "Stabilities of Zeolite‐Supported Ni Catalysts for Dry Reforming of Methane", Chinese Journal of Catalysis, 34, 764–768, 2013.

Tankova, I., Arishtirovaa, K., Bueno, J.M.C., Damyanova, S., Surface and Structural Features of Pt/PrO2–Al2O3 Catalysts for Dry Methane Reforming, Applied Catalysis A: General, 474, 135–148, 2014.

Bao, Z., Lu, Y., Han, J., Li, Y., Yu, F., "Highly Active and Stable Ni-Based Bimodal Pore Catalyst for Dry Reforming of Methane", Applied Catalysis A: General, 491, 116–126, 2015.

Lucre´dio, A.F., Assaf, J.M., Assaf, E.M., "Reforming of a Model Sulfur-Free Biogas on Ni Catalysts Supported on Mg(Al)O Derived from Hydrotalcite Precursors: Effect of La and Rh Addition", Biomass and Bioenergy, 60, 8-17, 2014.

Therdthianwong, S., Siangchina, S., Therdthianwong, A., "Improvoment of Coke Resistance of Ni/Al2O3 Catalyst in CH4/CO2 Reforming by ZrO2 Addition", Fuel Processing Techonology, 89, 160-168, 2008.

Rezai, M., Alavi, S.M., Sahebdelfar, S., Bai, P., Liu, X., Yan, Z., "CO2 Reforming of CH4 over Nano Crystalline Zirconia-Supported Nickel Catalysts", Applied Catalysis C, 77, 346-354, 2008.

Sokolov, S., Kondrotenko, V., E., Pohl, M., Barkschat, A., Rodemerck, U.., "Stable Low-Temperature Dry Reforming of Methane over Mesoporous La2O3-ZrO2 Supported Ni Catalyst", Applied Catalysis B, 113-114, 19-30, 2012.

Liu, D., Lau, R., Borgna, B., Yang, Y., "Carbon Dioxide Reforming of Methane to Synthesis Gas over Ni-MCM-41 Catalysts", Applied Catalysis A: General, 358 110–118, 2009.

Tsygano, A., Inaba M,, Tsunoda T., Uchida, K., "Rational Design of Mg–Al Mixed Oxide-Supported Bimetallic Catalysts for Dry Reforming of Methane", Applied Catalysis A, 292, 328-343, 2005.

Gallego, G.S., Batiot-Dupeyrat C., Barrault, J., Florez, E., Mondrago´n, F., "Dry Reforming of Methane over LaNi1_yByO3_d (B = Mg, Co) Perovskites Used as Catalyst Precursor", Applied Catalysis A: General, 334, 251–258, 2008.

Arbag, H., Yasyerli, S. ,Yasyerli, N., Dogu, G., Dogu, T., Črnivec, I.G.O., Pintar, A., "Coke Minimization During Conversion of Biogas to Syngas by Bimetallic Tungsten−Nickel Incorporated Mesoporous Alumina Synthesized by the One-Pot Route", Ind. Eng. Chem. Res., 54, 2290−2301, 2015.

Arbag, H., Yasyerli, S. ,Yasyerli, N., Dogu, T., Dogu, G., "Coke Minimization in Dry Reforming of Methane by Ni Based Mesoporous Alumina Catalysts Synthesized Following Different Routes: Effects of W and Mg", Topics in Catalysis, 56, 1695-1707, 2013.

Arbag, H., Yasyerli, S. ,Yasyerli, N., Dogu, G., Dogu, T., "Effects of Reduction Temperature on Activity and Coke Resistance of Mesoporous Alumina Supported Ni Catalysts for Dry Reforming of Methane", 5th National Catalysis Conference, Çukurova Üniversitesi, Adana, Türkiye, 23-26 Nisan 2014.

Arbag, H., Yasyerli, S. ,Yasyerli, N., Dogu, G., Dogu, T., " Effect Of Reaction Temperature On Coke Formation In Dry Reforming Of Methane", 6th National Catalysis Conference, Bursa Teknik Üniversitesi, Bursa, Türkiye, 27-30 Nisan 2016.

Taşdemir, H.M., Yaşyerli, N., "Ag/Alumina Katalizörleri Üzerinde Ürenin Bozunmasının İncelenmesi", Journal of the Faculty of Engineering and Architecture of Gazi University, 28, 3, 523-532, 2013.

Yaşyerli, S., Aktaş, Ö., "Propanın Oksidatif Dehidrojenasyonu için Doğrudan Sentez ve Emdirme Yöntemleriyle Hazırlanmış MCF Destekli V-Mo-Nb Katalizörleri", Journal of the Faculty of Engineering and Architecture of Gazi University, 27, 1, 49-58, 2012.

Yuan, Q., Yin, A., Luo, C., Sun, L., Zhang, Y., Duan, W., Liu, H., Yan, C., "Facile Synthesis for Ordered Mesoporous -Aluminas with High Thermal Stability", Journal of American Chemical Society, 130, 3465-3472, 2008.

Niesz, K., Yang, P., Somorjai, G. A., "Sol-gel Synthesis of Ordered Mesoporous Alumina", Chem. Commun., 15, 1986-87, 2005.

Kim, P., Kim, Y., Kim, H., Song, I.K., Yi, J., "Synthesis and Characterization of Mesoporous Alumina with Nickel Incorporated for Use in The Partial Oxidation of Methane into Synthesis Gas", Applied Catalysis A: General, 272, 157–166, 2004.

Hou, Z., Yokota, O., Tanaka, T., Yashima, T., "Characterization of Ca-promoted Ni/γ-Al2O3 Catalyst for CH4 Reforming with CO2", Applied Catalysis A: General, 253, 381–387, 2003.

Loviat, F., Czekaj, I., Wambach, J., Wokaun, A., "Nickel Deposition on γ-Al2O3 Model Catalysts: An Experimental and Theoretical Investigation", Surface Science, 603, 2210–2217, 2009.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.