YAPAY ÖĞRENME YÖNTEMLERİ VE DALGACIK DÖNÜŞÜMÜ KULLANILARAK NÖRO DEJENERATİF HASTALIKLARIN TEŞHİSİ

Fatih AYDIN, Zafer ASLAN
728 121

Öz


Bu çalışma da yere uygulanan kuvvet sinyalleri kullanılarak Amyotrophic Lateral Sclerosis (ALS), Huntington hastalığı (HH) ve Parkinson hastalığı (PH) gibi nöro‑dejeneratif hastalıkların (NDH) teşhisi ve sınıflandırılması gerçekleştirildi. Deneyler 16 kontrol bireyi (CO), 13 ALS, 20 HH ve 15 PH’ye ait veriler kullanılarak gerçekleştirildi. İlk olarak kuvvet sinyalleri, Discrete Meyer (dmey) dalgacığı kullanılarak yedinci seviyeye kadar ayrıştırıldı. Yeni oluşan sinyallerden yedinci seviyedeki yaklaşım sinyali seçildi. Bu sinyal üzerinde tepe (peak) analizi gerçekleştirilerek sinyalin lokal maksimumları, tepe’nin x‑ekseni değerleri, tepe genişliği ve tepe çıkıntıları elde edildi. Daha sonra bu dört tepe özelliğinin her birinden 15 adet temel istatistiksel özellik elde edildi. Böylelikle sol ayak için 60 ve sağ ayak için 60 olmak üzere toplamda 120 özellik elde edildi. Daha sonra OneRules sınıflandırıcı kullanılarak bu nitelikler içerisinden en çok enformasyon veren nitelikler seçildi. Bir sonraki aşamada ise RBFNetwork, Adaboost ve LogitBoost algoritmaları kullanılarak ALS‑CO, HH‑CO, PH‑CO ve NDH‑CO arasındaki ikili sınıflandırmalarda sırasıyla %93.1, %97.22, %83.87 ve %92.18 doğruluk sağlandı.

Anahtar kelimeler


Nöro dejeneratif hastalıklar; yapay öğrenme; dalgacık dönüşümü; RBFNetwork; Boosting

Tam metin:

PDF


Referanslar


JPND Research. What is Neurodegenerative Disease?. [Çevrimiçi]: http://www.neurodegenerationresearch.eu/about/what/. [Erişim: 08 Nisan 2015].

Özaras N.,Yalçın S., “Normal Yürüme ve Yürüme Analizi”, Turkish Journal of Physical Medicine and Rehabilitation, Cilt 48, No 3, 2002.

Barr A. E., “Biomechanics and Gait”, Orthopaedic Knowledge Update 7: Home Study Syllabus, Editör: Koval K. J., American Academy of Orthopaedic Surgeons, Rosemont, Illinois, A.B.D., 31 38, 2002.

Kanatlı U., Yetkin H., Songür M., Öztürk A., Bölükbaşı S., “Yürüme Analizinin Ortopedik Uygulamaları”, Türk Ortopedi ve Travmatoloji Birliği Derneği Dergisi, Cilt 5, No 1-2, 53-59, 2006.

Zengin S., İhmal Edilmiş Aşil Tendon Rüptürlerinde Lindholm Yöntemi ve Sonuçlarının Yürüme Analizi ile Değerlendirilmesi, Doktora Tezi, T.C. Sağlık Bakanlığı Okmeydanı Eğitim ve Araştırma Hastanesi Ortopedi ve Travmatoloji Kliniği, 2007.

Özaras N., Yalçın S., Yürüme Analizi, (2. Baskı), Avrupa Tıp Kitapçılık, İstanbul, 2002.

NCC CC (Collaborating Centre for Chronic Conditions), Parkinson's Disease: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care, Royal College of Physicians of London, London, 2006.

Bronstein J. M., Tagliati M., Alterman R. L. and et al., “Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues”, Archives of neurology (Arch. Neurol),Cit 68, No 2, 2011.

Frank S., Jankovic J., “Advances in the Pharmacological Management of Huntington's Disease”, Drugs, Cilt 70, No 5, 561–71, 2010.

Russell P., Harrison R., “What is amyotrophic lateral sclerosis”, Clinical Pharmacist, Cilt 6, No 7, 2014.

Han J., Jeon H. S., Yi W. J., Jeon B. S., Park K. S., “Adaptive windowing for gait phase discrimination in Parkinsonian gait using 3-axis acceleration signals”, Medical & biological engineering & computing (MBEC), Cilt 47, 1155 1164, 2009.

Dutta S., Chatterjee A., Munshi S., “An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification”, Expert Systems, Cilt 26, No 2, 202 217, 2009.

Wu Y., Krishnan S., “Computer-aided analysis of gait rhythm fluctuations in amyotrophic lateral sclerosis”, Medical & biological engineering & computing (MBEC), Cilt 47, 1165 1171, 2009.

Wu Y., Krishnan S., “Statistical Analysis of Gait Rhythm in Patients With Parkinson’s Disease”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Cilt 18, No 2, 150-158, 2010.

Banaie M., Pooyan M., Mikaili M., “Introduction and application of an automatic gait recognition method to diagnose movement disorders that arose of similar causes”, Expert Systems with Applications, Cilt 38, 7359 7363, 2011.

Manap H. H., Tahir N. M., Yassin A. I. M., “Statistical Analysis of Parkinson Disease Gait Classification using Artificial Neural Network”, IEEE Signal Processing and Information Technology (ISSPIT), 60 65, 2011.

Daliri M. R., “Automatic diagnosis of neuro-degenerative diseases using gait dynamics”, Measurement, Cilt 45, 1729 1734, 2012.

Lee S., Lim J. S., “Parkinson’s disease classification using gait characteristics and wavelet-based feature extraction”, Expert Systems with Applications, Cilt 39, 7338 7344, 2012.

Xia Y., Gao Q., Ye Q., “Classification of gait rhythm signals between patients withneuro-degenerative diseases and normal subjects: Experiments withstatistical features and different classification models”, Biomedical Signal Processing and Control, Cilt 18, 254 262, 2015.

PhysioNET. Gait Dynamics in Neuro-Degenerative Disease Data Base. [Çevrimiçi]: http://www.physionet.org/physiobank/database/gaitndd/. [Erişim: 13 Nisan 2015].

Hausdorff J. M., Ladin Z., Wei J. Y., “Footswitch system for measurement of the temporal parameters of gait”, Journal of Biomechanics (J. Biomech.), Cilt 28, 347–351, 1995.

Haşiloğlu A., “Dalgacık dönüşümü ve yapay sinir ağları ile döndürmeye duyarsız doku analizi ve sınıflandırma”, Turkish Journal of Engineering and Environmental Sciences (Turk J Engin Environ Sci.), Cilt 25, 405-413, 2001.

Shaker M. M., “EEG waves classifier using Wavelet transform and Fourier transform”, International Journal of Biological and Life Sciences (Int. J. Biol. Sci.), Cilt 1, No 2, 85 88, 2005.

Proch´azka A., Jech J., Smith J., “Wavelet transform use in signal processing”, 31st International Conference in Acoustics., Prague, Czech Technical University, 209 213, 1994.

Morlet J., Arens G., Fourgeau E., Giard D., “Wave propagation and sampling theory, Part1: Complex signal land scattering in multilayer media”, Journal of Geophysics, Cilt 47, 203-221, 1982.

Mallat S. G., “Multiresolution approximations and Wavelet orthonormal bases of L2(R), Transactions of the American Mathematical Society (Journal of the AMS), Cilt 315, No 1, 69-87, 1989.

Miner N. E., An introduction to Wavelet theory and analysis, Sandia Raporu, Sandia National Laboratories, Albuquerque, New Mexico, California, A.B.D., 1998.

Huang N. E., “Introduction to the Hilbert Huang Transform and Its Related Mathematical Problems”, Hilbert Huang transform and its applications, Cilt 5, Editör: Huang N. E., Shen S. S. P., World Scientific Publishing, Hackensack, A.B.D., 1-24, 2005.

Drozdov A., Pomortsev I., Tyutyukin K., Baloshin Y., “Comparison of Wavelet Transform and Fourier Transform Applied to Analysis of Non Stationary Processes”, Nanosystems: Physics, Chemistry, Mathematics (Nanosist.: fiz. him. mat.), Cilt 5, No 3, 363-373, 2014.

Donald M., Spiegelhalter D. J., Taylor C. C., Machine Learning: Neural and Statistical Classification, Overseas Press, 2009.

Nilsson N.J., “Introduction to Machine Learning: An Early Draft of a Proposed Textbook”, Robotics Laboratory, Department of Computer Science, Stanford University, [Çevrimiçi]: http://ai.stanford.edu/people/nilsson/MLBOOK.pdf [Erişim: 17 Nisan 2015].

Kohavi R., Provost F., “Glossary of Terms”, Machine Learning, Cilt 30, No 2 3, 271 274, 1998.

Duda R. O., Hart P. E., Stork D. G., Pattern classification, 2nd ed., Wiley Interscience, New York, 2001.

Alpaydın E., Introduction to Machine Learning, The MIT Press, 2004.

Wolpert D., “The Lack of A Priori Distinctions between Learning Algorithms”, Neural Computation, 1341-1390, 1996.

Wolpert D.H., Macready W.G., “No Free Lunch Theorems for Optimization”. IEEE Transactions on Evolutionary Computation (TEVC), Cilt 1, No 1, 67 82, 1997.

Witten I.H., Frank E., Data mining : practical machine learning tools and techniques, 2nd ed., Morgan Kaufmann series in data management systems, 2005.

Moody J., “Fast learning in networks of locally-tuned processing units”, Neural Computation, Cilt 1, 281-294, 1989.

Casdagli M., “Nonlinear prediction of chaotic time series”, Physica D Nonlinear Phenomena (Physica D), Cilt 35, 335 356, 1989.

Broomhead D.S., Lowe D., “Multivariable functional interpolation and adaptive networks”, Complex Systems, Cilt 2, 321 355, 1988.

Matej S., Lewitt R.M., “Practical considerations for 3 D image reconstruction using spherically volume elements”, IEEE Transactions on Medical Imaging (IEEE TMI), Cilt 15, 68 78, 1996.

Mashor M.Y., “Hybrid Training Algorithm for RBF Network”, In International Journal of the Computer, The Internet and Management (IJCIM), Cilt 8, No 2, 50-65, 2000.

Freund Y., Schapire R. E., “Experiments with a new boosting algorithm”, In: Thirteenth International Conference on Machine Learning, San Francisco, A.B.D., 148-156, 1996.

Ratsch G., Onoda T., Muller K.R., “Soft margins for AdaBoost”, Machine Learning, Cilt 42, 287–320, 2001.

Friedman J., Hastie T., Tibshirani R., “Additive logistic regression: a statistical view of boosting”, The Annals of Statistics, Cilt 28, No 2, 337–407, 2000.

Cai Y., Feng K., Lu W., Chou K., "Using LogitBoost classifier to predict protein structural classes", Journal of Theoretical Biology, Cilt 238, No 1, 172-176, 2006.

Holte R.C., “Very simple classification rules perform well on most commonly used datasets”, Machine Learning, Cilt 11, 63-91, 1993.

Rendell L., Seshu R. “Learning Hard Concepts Through Constructive Induction”, Computational Intelligence, Cilt 6, 247−270, 1990.

Shavlik J., Mooney R.J., Towell G., “Symbolic and Neural Learning Algorithms: An Experimental Comparison”, Machine Learning, Cilt 6, 111−143, 1991.

Buntine W., Niblett T., “A Further Comparison of Splitting Rules for Decision−Tree Induction”, Machine Learning, Cilt 8, 75−86, 1992.

Clark P., Niblett T., “The CN2 Induction Algorithm”, Machine Learning, Cilt 3, 261−283, 1989.

Mingers J., “An Empirical Comparison of Pruning Methods for Decision Tree Induction”, Machine Learning, Cilt 4, No 2, 227−243, 1989.

Buddhinath G., Derry D., “A Simple Enhancement to One Rule Classification”, Department of Computer Science & Software Engineering, University of Melbourne, Australia, 2007.

Cohen J., “A coefficient of agreement for nominal scales”, Educational and Psychological Measurement (EPM), Cilt 20, No 1, 37–46, 1960.

Gwet K., Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of Agreement Among Raters, (4th ed.), Advanced Analytics, LLC, 2010.

Landis J. R., Koch G. G., “The measurement of observer agreement for categorical data”, Biometrics, Cilt 33, 159–174, 1977.

Haltaş A., Alkan A., Karabulut M., “Metin Sınıflandırmada Sezgisel Arama Algoritmalarının Performans Analizi”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi (Gazi Üniv. Müh. Mim. Fak. Der.), Cilt 30, No 3, 417-427, 2015.

Lehmann E. L., Casella George, Theory of Point Estimation, (2nd ed.), Springer, New York, A.B.D., 1998.

Domingos P., “A Unifed Bias-Variance Decomposition and its Applications”, In Proc. 17th International Conf. on Machine Learning, San Francisco, CA, A.B.D., 231-238, 2000.

Geman S., Bienenstock E., Doursat R., “Neural networks and the bias/variance dilemma”, Neural Computation, Cilt 4, No 1, 1-58, 1992.

Mitchell T. M., Machine Learning, McGraw-Hill Science/Engineering/Math, 1997.

Bouckaert R.R., Frank E., Hall M., Kirkby R., Reutemann P., Seewald A., Seuse D., WEKA Manual for 3.6.0, [Çevrimiçi]: http://prdownloads.sourceforge.net/weka/WekaManuaF3.6.0.pdf?download. [Erişim Tarihi: 22 Nisan 2015].




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.