FETHİYE YERLEŞİM ALANINDAKİ ZEMİNLERİN SPT VE KAYMA DALGA HIZI VERİLERİYLE SIVILAŞMA POTANSİYELİNİN DEĞERLENDİRİLMESİ

Adem IŞIK, Nail Ünsal, Ayhan Gürbüz, Evren Şişman
1.123 343

Öz


Türkiye deprem kuşağında yer alan ve deprem geçmişi olarak aktif bir tarihe sahip olan ülkedir. Sıvılaşma ülkemizde 1992 Erzincan depreminden sonra önemli hale gelmiş ve daha sonra 1999 Marmara ve Düzce depremlerinde de geniş olarak gözlenmiştir. Bu çalışma kapsamında Muğla ili, Fethiye ilçesi inceleme alanında senaryo bir deprem büyüklüğüne göre sıvılaşma potansiyelinin belirlenmesi amacıyla bölgede 40 ayrı noktada Standart Penetrasyon Deneyi (SPT) ve sismik kırılma deneyleri yapılmıştır. SPT ve sismik kırılma deneyleri çakışacak şekilde aynı noktalarda yapılması amaçlanmış ve böylece sonuçlar aynı noktada iki ayrı farklı yöntemle elde edilerek karşılaştırılmıştır. İnceleme alanında SPT darbe sayıları, yeraltı su seviyesi, ince dane oranı ve kayma dalgası hızı verilerine göre sıvılaşma analizi yapılarak sıvılaşma risk indeksine göre sıvılaşma risk haritaları hazırlanmıştır. Yapılan çalışmalar sonucunda Mw=7.0 büyüklüğünde senaryo bir deprem durumunda inceleme alanının büyük bir bölgesinde sıvılaşmanın olmayacağı veya düşük seviyede sıvılaşma olabileceği sonucuna varılmıştır.


Anahtar kelimeler


Sıvılaşma, SPT, Kayma dalgası hızı

Tam metin:

PDF


Referanslar


KAYNAKLAR (REFERENCES)

Youd TL., Perkins DM., “Mapping liquefaction- induced ground failure potential”, Journal of Geotech Eng Div., 104(4):443–446, 1978.

Kramer SL., Mayfield RT., “Return period of soil liquefaction”, Journal of Geotechnical and Geoenvironmental Eng., 133(7):802–813, 2007.

Kramer SL., “Geotechnical earthquake engineering”, Prentice-Hall Civil Engineering and Engineering Mechanics, 1996.

Ishihara K., “Soil behaviour in earthquake geotechnics”, The Oxford Engineering Science Series, Oxford, 1996.

Liu H., Qiao T., “Liquefaction potential of saturated sand deposits underlying foundation of structure”, Proceeding of 8th World Conference on Earthquake Engineering, San Francisco, Vol.3, 199-206, 1984.

Elgamal AW., Dobry R., Adalıer K., “Small-scale Shaking Table Tests of Sturated Layered Sand-Silt Deposits”, 2nd U.S-Japan Workshop on Soil Liquefaction, Buffalo, N.Y., NCEER Rep. No. 890032, 233-245, 1989.

Lambe PC., “Dynamic Centrifuge Modelling of a Horizontal Sand Stratum”, Sc.D Thesis, Dept. Of Civil Engineering, Mass. Inst. Technology, Cambridge, Mass. USA, 1981.

Husmand B, Scott F, Crouse CB., “Centrifuge Liquefaction Tests in a Laminar Box”, Geotechnique, 38(2): 253-262, 1988.

Seed HB., Idriss IM., “Simplified procedure for evaluating soil liquefaction potential”, Journal of Soil Mech. Foundation Div., ASCE; 97(9):1249–73, 1971.

Tokimatsu K., Yoshimi Y., “Empirical correlation of soil liquefaction based on SPT N-value and fines content”, Soils and Foundations, 23(4):56–74, 1983.

Iwasaki T., Tokida K., Tatsuoka F., “Soil liquefaction potential evaluation with use of the simplified procedure”, International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, pp 209–214, 1981.

Suzuki Y., Koyamada K., Tokimatsu K., “Prediction of liquefaction resistance based on CPT tip resistance and sleeve friction”, Proceedings XIV International Conference of Soil Mechanics and Foundation Engineering, Hamburg, Germany, pp 603–606, 1997.

Stokoe KH., Roesset JM., Bierschwale JG., Aouad M., “Liquefaction Potential of Sands from Shear wave Velocity”, Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo, Japan, Vol. III: 213-218, 1988.

Andrus RD., Stokoe II KH., “Liquefaction resistance of soils from shear wave velocity”, Journal of Geotechnical and Geoenvironmental Eng.;126(11):1015–25, 2000.

Sönmez H. ve Gökçeoğlu C., “A liquefaction severity index suggested for engineering practice”, Environmental Geology, 48, 81–91, 2005.

Şenel, M., “Fethiye L8 Paftası”, Maden Tetkik ve Arama Gen. Müd. Jeoloji Etüt. Dai., L8 Paftası:1 – 21, 1997.

Tansuğ Z. ve Öztunalı A., “Fethiye ve civarı hidrojeolojik etüd raporu”, Devlet Su İşleri Genel Müdürlügü, 1 – 35, 1977.

Şengör, A. M. C., ve Yılmaz, Y., “Tethyan evolution of Turkey: a plate tectonic approach”, Tectonophysics, 75, 181-241, 1981.

Barka, A., Reilinger, R., Şaroğlu, F., and Sengör,A. M. C., “The Isparta Angle: Its evolution and importance in the tectonics of the eastern Mediterranean region”, Proceedings of International Earth Sci. Collog. Aegean Region, 3-17, 1995.

İnternet, “Maden Teknik Arama Genel Müdürlüğü Türkiye Diri Fay Haritası”, http://www.mta.gov.tr/mta_web/dirifay1.asp, 2006.

Yağmurlu, F., “Burdur fayının sismotektonik özellikleri”, Batı Anadolu’nun Depremselliği Sempozyumu, İzmir, 143-151, 2000.

Reilinger, R., Mc Clusky, S., E. Mediterranean GPS Consortium, “GPS constraints on continental deformation in the eastern Mediterranean and Caucasus region”, Geophysical Research Abstracts, 5, 2003.

Youd TL., Idriss IM., Andrus RD., Arango I., Castro G., Christian JT., Dobry R., Liam Finn WD., Harder LF Jr., Hynes ME., Ishihara K., Koester JP., Laio SSC., Marcuson WF III., Martin GR., Mitchell JK., Moriwaki Y., Power MS., Robertson PK., Seed RB., Stokoe KH., “Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils”, Jornal of Geotechnical and Geoenvironmental Eng, 127(10):817–833, 2001.

Çetin, K. Ö and Seed, R. B., “Nonlinear Shear Mass Participation Factor, rd for Cyclic Shear Stress Ratio Evaluation”, Soil Dynamics and Earthquake Engineering, Vol. 24, pp.103-113, 2004.

Aydan Ö., Sezaki M., Yarar R., “The Seismic characteristic of Turkish earthquakes”, Eleventh World conference on earthquake engineering, Mexico, pp 1–8, 1996.

Liao S.S. and Whitman R.V., “Overburden correction factors for SPT in sand”, Journal of Geotechnical Engineering, 112(3), pp.373-377, 1986.

Youd T.L. and Idriss I.M., “Summary Report”, Proc. of the NCEER workshop on evaluation of liquefaction resistance of soils, NCEER Report No. 97-0022, 1997.

Skempton A.W., “Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation”, Geotechnique, 36(3), pp.425-447, 1986.

Idriss I. M., “Presentation notes: An update of the Seed-Idriss simplified procedure for evaluating liquefaction potential”, TRB Workshop on New Approaches to Liquefaction Anal., Publ. No. FHWARD- 99-165, Federal Highway Administration, Washington, D.C., 1999.

Iwasaki T., Tokida K., Tatsuoka F., Watanabe S., Yasuda S., Sato H., “Microzonation for soil liquefaction potential using simplified methods”, Proceedings of the 3rd International Conference on Microzonation, Seattle, vol 3, pp 1319–1330, 1982.

Chen CJ., Juang CH., “Calibration of SPT- and CPT-based liquefaction evaluation methods”, Innovations and applications in geotechnical site characterization, Vol. 97. Geotechnical Special Publication, ASCE, Reston, pp 49–64, 2000.

Juang CH., Yuan H., Lee DH., Lin PS., “A simplified CPT-based method for evaluating liquefaction potential of soils”, Journal of Geotechnical and Geoenvironmental Eng., 129 (1):66– 80, 2003.

Sönmez H., “Modification to the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol-Turkey)”, Environmental Geology, 44(7):862–871, 2003.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.