BÖLÜNMÜŞ VERİ-TABANLI GİZLİLİĞİ KORUYAN ORTAK FİLTRELEME SİSTEMLERİNDE GİZLİ VERİNİN ELDE EDİLMESİ

Burcu Demirelli Okkalıoğlu, Mehmet Koç, Hüseyin Polat
571 103

Öz


Ortak filtreleme algoritmalarının doğru ve güvenilir öneriler üretebilmesi için yeterli veriye ihtiyaç vardır. Bunun nedenle yetersiz veriye sahip iki elektronik alışveriş sitesi gizliliklerini ihlal etmeden aralarında bölünmüş veriden öneriler sunmak isteyebilir. Bu amaçla gizliliği koruyan ortak filtreleme sistemleri geliştirilmiştir. Bu sistemlere ataklar yapılarak gizli veri elde edilebilir. Bu makalede yatay ve dikey bölünmüş veri temelli gizliliği koruyan ortak filtreleme sistemlerine karşı atak senaryoları tasarlanarak ne kadar gizli veri elde edilebileceği gösterilmiştir. Ayrıca sistem hakkındaki ilave bilginin gizli veri elde etmeye katkısı çalışılmıştır. Gerçek verilerle yapılan deneyler bazı durumlarda gizli verinin önemli oranda elde edilebileceği; ama ilave bilgi olmadan ve verinin seyrek olduğu durumlarda başarının çok düştüğünü göstermiştir.

Anahtar kelimeler


Gizlilik; Veri imarı; Bölünmüş veri; Ortak filtreleme; Atak

Tam metin:

PDF


Referanslar


KAYNAKLAR (REFERENCES)

Schafer, J.B., Konstan J.A., ve Riedl J.T., “E-commerce recommendation applications,” Data Mining and Knowledge Discovery, Cilt 5, No 1-2, 115-153, 2001.

Herlocker, J.L., Konstan, J.A., Terveen, L.G., ve Riedl, J.T., “Evaluating collaborative filtering recommender systems,” ACM Transactions on Information Systems, Cilt 22, No 1, 5-53, 2004.

Canny, J., “Collaborative filltering with privacy via factor analysis,” Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Tetrieval, Tampere, Finland, 238-245, 11-15 Ağustos 2002.

Cranor, L.F., “’I didn’t buy it for myself’: Privacy and ecommerce personalization,” Proceedings of the 2003 ACM Workshop on Privacy in the Electronic Society, Washington, DC, 111-117, 30 Ekim 2003.

Bilge, A., Kaleli, C., Yakut, I., Gunes, I., ve Polat, H., “A survey of privacy-preserving collaborative filltering schemes,” International Journal of Software Engineering and Knowledge Engineering, Cilt 23, No 8, 1085-1108, 2013.

Kargupta, H., Datta, S., Wang, Q., ve Sivakumar, K., “On the privacy preserving properties of random data perturbation techniques,” Proceedings of the 3rd IEEE International Conference on Data Mining, Melbourne, FL, 99-106, 19-22 Kasım 2003.

Kargupta, H., Datta, S., Wang, Q., ve Sivakumar, K., “Random-data perturbation techniques and privacy-preserving data mining,” Knowledge and Information Systems, Cilt 7, No 4, 387-414, 2005.

Huang, Z., Du, W., ve Chen, B., “Deriving private information from randomized data,” Proceedings of the 24th ACM SIGMOD International Conference on Management of Data, Baltimore, MD, 37-48, 14-16 Haziran 2005.

Zhang, S., Ford, J., ve Makedon, F., “Deriving private information from randomly perturbed ratings,” Proceedings of the 6th SIAM International Conference on Data Mining, Bethesda, MD, 59-69, 2006.

Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., ve Shmatikov, V., “”You might also like:” Privacy risks of collaborative filtering,” Proceedings of the 2011 IEEE Symposium on Security and Privacy, Oakland, CA, 231-246, 22-25 Mayıs 2011.

Okkalioglu, M., Koc, M., ve Polat, H., “On the discovery of fake binary ratings,” Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, 901-907, 13-17 Nisan 2015.

Polat, H., ve Du, W., “Achieving private recommendations using randomized response techniques,” Lecture Notes in Computer Science, Cilt 3918, 637-646, 2006.

Okkalioglu, M., Koc, M., ve Polat, H., “On the privacy of horizontally partitioned binary data-based privacy-preserving collaborative filtering,” Proceedings of the 10th DPM International Workshop on Data Privacy Management, Vienna, Austria, 21-22 Eylül 2015.

Okkalioglu, M., Koc, M., ve Polat, H., “Deriving private data in vertically partitioned data-based PPCF schemes,” Proceedings of the 8th International Conference on Information Security and Cryptology, Ankara, Turkey, 30-31 Ekim 2015.

Polat, H., “Privacy-preserving collaborative filtering,” Doktora Tezi, Syracuse University, Computer and Information Science, 2006.

Polat, H., ve Du, W., “Privacy-preserving collaborative filtering on vertically partitioned data,” Lecture Notes in Computer Science, Cilt 3721, 651-658, 2005.

Guo, S., Wu, X., ve Li, Y., “On the lower bound of reconstruction error for spectral filtering based privacy preserving data mining,” Lecture Notes in Computer Science, Cilt 4213, 520-527, 2006.

Guo, S., Wu, X.,ve Li, Y., “Determining error bounds for spectral filtering based reconstruction methods in privacy preserving data mining,” Knowledge and Information Systems, Cilt 17, No 2, 217-240, 2008.

Liu, K., Kargupta, H., ve Ryan, J., “Random projection-based multiplicative data perturbation for privacy preserving distributed data mining,” IEEE Transactions on Knowledge and Data Engineering, Cilt 18, No 1, 92-106, 2006.

Chen, K., ve Liu, L., “Privacy preserving data classification with rotation perturbation,” Proceedings of the 5th IEEE International Conference on Data Mining, Houston, TX, 589-592, 27-30 Kasım 2005.

Chen, K., Sun, G., ve Liu, L., “Towards attack-resilient geometric data perturbation,” Proceedings of the 2007 SIAM International Conference on Data Mining, Minneapolis, 78-89, 2007.

Okkalioglu, B. D., Okkalioglu, M., Koc, M., ve Polat, H., “A survey: Deriving private information from perturbed data,” Artificial Intelligence Review, 1-23, 2015.

Polat, H., ve Du, W., “Privacy-preserving collaborative filtering using randomized perturbation techniques,” Proceedings of the 3rd IEEE International Conference on Data Mining, Melbourne, FL, 625-628, 19-22 Kasım 2003.

Polat, H., ve Du, W., “Privacy-preserving top-n recommendation on horizontally partitioned data,” Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, Paris, France, 725-731, 19-22 Eylül 2005.

Polat, H., ve Du, W., “Privacy-preserving top-n recommendation on distributed data,” Journal of the American Society for Information Science and Technology, Cilt 59, No 7, 1093-1108, 2008.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.