KÜRESEL YÜZEYLER ETRAFINDA NANO AKIŞKANLARDA HAVUZ KAYNAMA ISI TRANSFERİNİN DENEYSEL İNCELENMESİ

Doğan ÇİLOĞLU, Abdurrehim BÖLÜKBAŞI, Harun ÇİFCİ
1.667 876

Öz


Bu çalışmada, atmosfer basıncı altında ve doyma şartlarında nano akışkanlarla su verilerek soğutulan yüksek sıcaklıktaki küresel yüzeyler etrafında havuz kaynama ısı transferi deneysel olarak incelenmiştir. Deneylerde %0,01, %0,05 ve %0,1 olmak üzere üç farklı hacimsel konsantrasyonda saf su esaslı silika, alümina, titania ve bakır oksit nano akışkanları kullanılmıştır. Bronz malzemeden yapılmış küresel test numunesi yüksek sıcaklıklara kadar ısıtıldıktan sonra, doymuş şartlardaki nano akışkan süspansiyonlarına aniden daldırmıştır. Numuneye ait sıcaklık-zaman verileri ile soğuma eğrileri çizilmiş ve kaynama eğrileri elde edilmiştir. Deneysel sonuçlar, test numunesinin soğuma performansının nano akışkan tipine ve konsantrasyonuna bağlı olarak değiştiğini göstermiştir. İlk su verme testlerinde saf suya yakın değerler elde edilmesine rağmen, nano akışkanlarda tekrarlı testler ile soğuma süresinin önemli ölçüde kısaldığı görülmüştür. Bu etki nano partikül konsantrasyonuyla artmıştır. Özellikle silika nano akışkanı için tekrarlı su verme testleri ile film kaynama kaybolmuş ve kritik ısı akısı önemli derecede artmıştır. Deneysel sonuçlar, ayrıca, çekirdek havuz kaynama ısı transferinde tüm nano akışkanlar için önemli bir değişimin olmadığını göstermiştir. Sonuç olarak, nano akışkanlar ile su verme testleri sonrasında, test yüzeyi üzerinde biriken nano partiküllerin yüzeyin ıslatabilirliğini artırdığı ve böylece kritik ısı akısında artışa neden olduğu belirlenmiştir.


Anahtar kelimeler


Isı transferi, havuz kaynama, nano akışkanlar, küresel yüzeyler

Tam metin:

PDF


DOI: http://dx.doi.org/10.17341/gummfd.91407

Referanslar


Choi, S.U.S., “Enhancing thermal conductivity of fluids with nanoparticles”, in: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, FED-vol. 231/MD-vol. 66, ASME, New York, 99-105, 1995.

Kim, H., DeWitt, G., McKrell, T., Buongiorno, J. ve Hu, L.W., “On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles”, International Journal of Multiphase Flow, Cilt 35, 427-438, 2009.

Kim, H., Buongiorno, J., Hu, L.W. ve McKrell, T., 2010. Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids, International Journal of Heat and Mass Transfer, Cilt 53, 1542-1553.

Park, H.S., Shiferaw, D., Sehgal, B.R., Kim, D.K. ve Muhammed, M., “Film boiling heat transfer on a high temperature sphere in nanofluid”, In: Proceedings of ASME HT/FED 2004, Cilt 4, 469-476, 2004.

Lotfi, H. ve Shafii, M.B., “Boiling heat transfer on a high temperature silver sphere in nanofluid”, International Journal of Thermal Sciences, Cilt 48, No 12, 2215-2220, 2009.

Ciloglu, D. ve Bolukbasi, A., “The quenching behavior of aqueous nanofluids around rods with high temperature”, Nuclear Engineering and Design, Cilt 241, No 7, 2519-2527, 2011.

Habibi, K.H., Saboonchi, A. ve Shafii, M.B., “The quenching of silver rod in boiling carbon nano tube-water nanofluid”, International Journal of Thermal Sciences, Cilt 75, 95-104, 2014.

Jeschar, R., Spect, E. ve Heidt, V., “An analytical model for free convection film boiling on immersed solids”, Chem. Eng. and Proc., Cilt 31, 137-146, 1992.

Incropera, F.P. ve DeWitt, D.P., Fundamentals of Heat and Mass Transfer, 4th ed., John Wiley and Sons, New York, A.B.D., 1996.

Yesilata, B., “A simple experimental method for determining natural convection heat transfer coefficient in liquids”, Termodinamik, Cilt 146, 94-102, 2004.

Buchanan, J.L. ve Turner, P.R., Numerical Methods and Analysis, McGraw-Hill, New York, A.B.D., 1992.

Shahmoradi,. Z., Etesami, N. ve Esfahany, M.N., “Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis”, Int. Communications in Heat and Mass Transfer, Cilt 47, 113-120, 2013.

Sakashita, H., “CHF and near-wall boiling behaviors in pool boiling of water on a heating surface coated with nanoparticles”, Int. J. Heat Mass Transf., Cilt 55, 7312-7320, 2012.

Kathiravan, R., Kumar, R., Gupta, A. ve Chandra, R., “Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater”, Int. J. Heat Mass Transf., Cilt 53, 1673-1681, 2010.

Kim, S.J., Bang, I. C., Buongiorno, J. ve Hu, L.W., “Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux”, Int. J. Heat Mass Transfer, Cilt 50, 4105-4116, 2007.

Bang., I.C. ve Chang, S.H., “Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool”, Int. J. Heat Mass Transfer, Cilt 48, 2407-2419, 2005.

Vassallo, P., Kumar, R. ve D’Amico, S., “Pool boiling heat transfer experiments in silica-water nano-fluids”, Int. J. Heat Mass Transf., Cilt 47, No 2, 407-411, 2004.

Das, S.K., Putra, N. ve Roetzel, W., “Pool boiling characteristics of nanofluid”, Int. J. Heat Mass Transf., Cilt 46, 851-862, 2003.

Park, H.S., Shiferaw, D., Sehgal, B.R., Kim, D.K. ve Muhammed, M., “Film boiling heat transfer on a high temperature sphere in nanofluid”, in: Proceedings of 2004 ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, NC, 1-8, 2004.

Golubovic, M.N., Hettiarachchi, H.D.M., Worek, W.M. ve Minkowycz, W.J., “Nanofluids and critical heat flux, experimental and analytical study”, Appl. Therm. Eng., Cilt 29, 1281-1288, 2009.

Stutz, B., Morceli, C.H.S., Silva, M.F., Cioulachtjian, S. ve Bonjour, J., “Influence of nanoparticle surface coating on pool boiling”, Exp. Thermal Fluid Sci., Cilt 35, 1239-1249, 2011.

Wen, D., Corr, M., Hu, X. ve Lin, G., “Boiling heat transfer of nanofluids: the effect of heating surface modification”, Int. J. of Therm. Sci., Cilt 50, 480-485, 2011.

Mourgues, A., Virginie, H., Muller, T. ve Marylise, C.C., “Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid”, Int. J. Heat Mass Transfer, Cilt 57, No 2, 595-607, 2013.

Coursey, J.S. ve Kim, J., “Nanofluid boiling: the effect of surface wettability”, Int. J. Heat Mass Transfer, Cilt 29, 1577-1585, 2008.

Kim, H. ve Kim, M., “Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids”, Heat and Mass Transfer, Cilt 45, 991-998, 2009.

Truong, B., Hu, L.W., Buongiorno, J. ve McKrell, T., “Modification of sandblasted plate heaters using nanofluids to enhance pool boiling critical heat flux”, Int. J. Heat Mass Transf., Cilt 53, 85-94, 2010.

Ahn, H.S. ve Kim, M.H., “The boiling phenomenon of alumina nanofluid near critical heat flux”, Int. J. Heat Mass Transf., Cilt 62, 718-728, 2013.

Kathiravan, R., Kumar, R., Gupta, A. ve Chandra, R., “Characterization and pool boiling heat transfer studies of nanofluids”, J. Heat Transfer, Cilt 131, 1-8, 2009.

Das, S.K., Narayan, G.P., Anoop, K.B., “Survey on nucleate pool boiling of nanofluids: the effect of particle size relative to roughness”, J. Nanoparticle Res., Cilt 10, 1099-1108, 2008.

Das, S.K., Putra, N. ve Roetzel, W., “Pool boiling of nano-fluids on horizontal narrow tubes”, Int. J. Multiphase Flow, Cilt 29, 1237-1247, 2003.

Wenzel, R.N., “Surface roughness and contact angle (letter)”, J. Phys. Coll. Chem., Cilt 53, No 9, 1466, 1949.

Kim, H.D., Kim, J. ve Kim, M.H., “Experimental studies on CHF characteristics of nano-fluids at pool boiling”, Int. J. Multiphase Flow, Cilt 33, 691-706, 2007.

Kim, H.D. ve Kim, M.H., “Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids”, Applied Physics Letters, Cilt 91, 014104, 2007.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.