ZAMANA BAĞLI SIKIŞTIRILAMAZ KAVİTE AKIŞININ AEROAKUSTİK ANALİZİ

Baha Zafer, Furkan Çoşgun
1.394 323

Öz


Bu çalışmada, 2 ve 3 boyutlu kavite profili boyunca sıkıştırılamaz, zamana bağlı akış alanı ve aerodinamik kaynaklı aeroakustik gürültü incelenmiştir. 2 boyutlu akış alanının çözümünde türbülans modeli olarak standart k-ε, k-ω ve SST k-ω kullanılırken, 3 boyutlu çözümlerde ise k-ω modeli ile hesaplama alanı çözülmüştür. Düşük Reynolds ve Mach Sayısı için kavite içi ve çevresindeki hesaplanan akış alanı sonuçları deneysel çalışmalar ile karşılaştırılarak doğrulanmıştır. Hem 2 boyutlu hem de 3 boyutlu akış alanına ait zaman bağlı değişkenler, Ffowcs William-Hawkings (FW-H) Akustik Analoji yaklaşımı kullanılarak kavite gürültüsü hesaplanmıştır. 3 boyutlu kavite için, geçişli iç yüzey yaklaşımı kullanılarak quadrapol terimlerinin aeroakustik gürültü sonuçlarına etkisi gösterilmiştir.


Anahtar kelimeler


Kavite Akışı; Aeroakustik; Düşük Reynolds Sayısı; Akustik Analoji

Tam metin:

PDF


DOI: http://dx.doi.org/10.17341/gummfd.34239

Referanslar


Lawson S.J. ve Barakos G.N., Review of numerical simulations for high-speed turbulent cavity flows, Progress in Aerospace Sciences, 47 ( 3), 186-216, 2011.

Nakı̇boğlu G., Manders H.B.M. ve Hirschberg A., Aeroacoustic power generated by a compact axisymmetric cavity: prediction of self-sustained oscillation and influence of the depth, Journal of Fluid Mechanics, 703, 163- 191, 2012.

Barone M.F. ve Srinivasan A., A Computational study of flow within cavities with complex geometric features, 53rd AIAA Aerospace Sciences Meeting, AIAA SciTech AIAA 2015-0008, 2015.

Zhang S., Xuliang L., Hanxin Z. ve Chi-Wang S., High order and high resolution numerical schemes for computational aeroacoustics and their applications, Lecture Notes in Mechanical Engineering-Fluid-Structure-Sound Interactions and Control, 27-32, 2016.

Lighthill M. J., On sound generated aerodynamically I. General theory, Proceeding Royal Society London A, 211, 564-587, 1952.

Crook S. D., Lau T.C.W. ve Kelso R.M., Three-dimensional flow within shallow, narrow cavities, Journal of Fluid Mechanics, 735, 587-612, 2013.

Temmerman L., Tartinville B. ve Hirsch C., URANS investigation of the transonic M219 cavity, Progress in Hybrid RANS-LES Modelling - Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 471-481, 2012.

Ashworth R., Prediction of acoustic resonance phenomena for cavities detached eddy simulation, The Conference of Royal Aero Society- QinetiQ, UK, 2004.

Liggett L.D. ve Smith M.J., Cavity Flow assessment using advanced turbulence methods, Journal of Aircraft, 48 (1), 141-156, 2011.

Chen H., Zhong Q., Wang X., Li D., Reynolds number dependence of flow past a shallow open cavity, Science China Technological Sciences, 57 (11), 2161–2171, 2014.

Kompenhans M., Ferrer E., Chavez M. ve Valero E, Numerical study of three dimensional acoustic resonances in open cavities at high Reynolds numbers, Aerospace Science and Technology, 45, 501–511, 2015.

Haaban M. ve Mohany A., Passive control of flow‑excited acoustic resonance in rectangular cavities using upstream mounted blocks, Experimental Fluids, 56, 2015.

Pey Y.Y. ve Chua L.P., Effects of trailing wall modifications on cavity wall pressure, Experimental Thermal and Fluid Science, 57, 250–260, 2014.

Pey Y.Y., Chua L.P. ve Siauw W.L., Effect of trailing edge ramp on cavity flow structures and pressure drag, International Journal of Heat and Fluid Flow, 45, 53–71, 2014.

Vikramaditya, N.S. ve Kurian, J., “Experimental study of influence of trailing wall geometry on cavity oscillations in supersonic flow”, Experimental Thermal and Fluid Science, Cilt: 54, 102–109, 2014.

Martinez M.A., Di Cicca G.M., Iovieno M. ve Onorato M., Control of Cavity Flow Oscillations by High Frequency Forcing, Journal of Fluids Engineering, 134, 128-139, 2012.

Fuglsang D.F. ve Cain A.B., Evaluation of shear layer cavity resonance mechanisms by numerical simulation, 30. AIAA Aerospace Scientific Meeting Exhiation, Reno Nevada -USA, 1992.

Sridhar V., Kleine H. ve Gai S.L., Visualization of wave propagation within a supersonic two-dimensional cavity by digital streak schlieren, Experiments in Fluids, 56:152, 2015.

Laiping Z., Ming L., Wei L. ve Xin H., An implicit algorithm for high-order DG/FV schemes for compressible flows on 2D arbitrary grids, Communications in Computational Physics, 17 (1), 287-316, 2015.

FLUENT Theory Guide14.0, 2013.

Wilcox D.C., Turbulence Modeling for CFD, 3. Baskı, DCW Industries, Inc., La Canada, 2006.

Özsoy E., Rambaud R., Stitou A. ve Riethmuller M.L., Vortex characteristics in laminar cavity flow at very low Mach number, Experiments in Fluids, 38, 133-145, 2005.

Özsoy E. ve Aslan A.R., Üç boyutlu bir kavite üzerindeki sıkıştırılamaz akışın sayısal bir yöntemle analizi, İTÜ Dergisi/D Mühendislik, 10 (3), 149-159, 2011.

Ffowcs Williams J.E. ve Hawkings D.L., Sound generation by turbulence and surfaces in arbitrary motion, Philosophical Transcation Royal Society Series A, 264, 321-342, 1969.

Peng S.H. ve Leicher S., DES and hybrid RANS-LES modelling of unsteady pressure oscillations and flow features in a rectangular cavity, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 97, 132–141, 2008.

X Gloerfelt Cavity Noise, VKI Lecture Series, Brussels, Belgium, 2009.

Ünalmis Ö.H., Clemens N.T. ve Dolling D.S., Cavity oscillation mechanisms in high-speed flows, AIAA Journal, 42 (10), 2035-2041, 2004.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.