FLOR İYONLARI İLAVE EDİLMİŞ NANO-KALSİYUM FOSFATLARIN MİKROYAPISININ ARAŞTIRILMASI

Aydin TAHMASEBİFAR, Serap GÜNGÖR, Zafer EVİS
4.251 641

Öz


Bu çalışmada, farklı kompozisyonlarda flor (F-) iyonları ilave edilmiş kalsiyum fosfatlar (CaP) çöktürme yöntemi ile üretilmiş ve mikroyapılarını incelemek için 1100ºC’de 1 ve 5 saat sinterlenmiştir. Sinterleme zamanının uzatılması ile sinterlenmiş malzemelerin yoğunluklarının arttığı gözlemlenmiştir. Ana faz olarak β-üç kalsiyum fosfatın (TCP) varlığı Rietveld yöntemi tarafından belirlenen yapısal analizlerle belirlenmiştir. Ayrıca örneklerde önemli miktarda hidroksiapatit (HA) tespit edilmiştir. İyonların ilave edilmesiyle birim kafes hacmi küçülmüştür. Taramalı elektron mikroskobu (SEM) sonuçları, iyonların eklenmesiyle daha küçük tanelerin oluştuğunu göstermiştir. Fourier dönüşümlü kızıl ötesi spektrometresi (FTIR), karakteristik TCP bantlarına ek olarak, F- iyonunun varlığını doğrulamıştır.


Anahtar kelimeler


Biyoseramikler; kalsiyum fosfatlar; katkılama; sinterleme

Tam metin:

PDF


DOI: http://dx.doi.org/10.17341/gummfd.60627

Referanslar


Besta, S.M., Porterb, A.E., Thiana, E.S. ve Huang, J., “Bioceramics: Past, present and for the future”, J. Eur. Ceram. Soc., Cilt 28, 1319–1327, 2008.

Shackelford, J.F., Advanced Ceramics, Cilt 1, Bioceramics, Overseas Publishers Association, NJ, A.B.D., 19-34, 1999.

Kalita, S.J., Bhardwaj, A ve Bhatt, H.A., “Nanocrystalline calcium phosphate ceramics in biomedical engineering” Mater. Sci. Eng. C, Cilt 27, 441–449, 2007.

Ni, S. ve Chang, J., “In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics”, J. Biomater. App., Cilt 24, 139-158, 2009.

Descamps, M., Richart, O., Hardouin, P., Hornez, J.C. ve Leriche, A., “Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural”, Ceram. Inter., Cilt 34, 1131-1137, 2008.

Sanosh, K.P., Chu, M.C., Balakrishnan, M.C., Kim, T.N. ve Cho, S.J., “Sol-gel synthesis of pure nanosize β-tricalcium phosphate crystalline powders”, Current Appl. Phys, Cilt 10, 68-71, 2010.

Douard, N., Detsch, R., Ghodsina, R.C., Damia, C., Deisinger, U. ve Champion E., “Processing, physico-chemical characterisation and in vitro evaluation of silicon containing β-tricalcium phosphate ceramics”, Mater. Sci. Eng. C, Cilt 31, 531-539, 2011.

Evis, Z., “Cu+2 eklenmiş hidroksiapatitlerin yüksek sıcaklıkta sinterlenmesi ve iç yapı incelemesi”, Journal of The Faculty of Engineering and Architecture of Gazi University, Cilt 24, No 4, 569–573, 2009.

Kim, H.W., Noh, Y.J., Koh, Y.H. ve Kim, H.E., “Enhanced performance of fluorine substituted hydroxyapatite composites for hard tissue engineering”, J. Mater. Sci. Mater. Med., Cilt 14, 899-904, 2003.

Seeley, Z., Bandyopadhyay, A. ve Bose S., “Tricalcium phosphate based resorbable ceramics: influence of NaF and CaO addition”, Mater. Sci. Eng. C, 28, 11-17, 2008.

Kalita, S.J., Bhardwaj, A. ve Bhatt, H.A.,“Nanocrystalline calcium phosphate ceramics in biomedical engineering”, Mater. Sci. Eng. C, Cilt 27, 441–449, 2007.

Jarcho, M., Bolen, C.H, Thomas, M.B., Bobick, J., Kay, J.F. ve Doremus, R.H., “Hydroxylapatite synthesis and characterization in dense polycrystalline form”, J. of Mater. Sci.11, 2027-2035, 1976.

Evis, Z. ve Doremus, R.H.,“Hot-pressed hydroxylapatite/monoclinic zirconia composites with improved mechanical properties”, J. of Mater. Sci. Cilt 42, 2426-2431, 2007.

Cullity, B. D., Elements of X-ray Diffraction, Second Edition, Addison-Wesley Publishing Company, MA, A.B.D., 1978.

Hilliard, J.E., “Estimating grain size by the intercept method”, Metal Progress Data Sheet, 99-102, 1964.

Gross, K.A. ve Rodriguez, L.M.,“Sintered hydroxyfluorapatites, part I: Sintering ability of precipitated solid solution powders”, Biomater., Cilt 25, 1375-1384, 2004.

Kwon, S., Jun, J., Hong, S. ve Kim, H., “Synthesis and dissolution behavior of b-TCP and HA/b-TCP composite powders”, J. of Eur. Ceram. Soc. Cilt 23, 1039–1045, 2003.

Descamps, M., Hornez, J. C. ve Lerich, A., “Effect of powders stoichiometry on the sintering of β-tricalcium phosphate”, J. Eur. Ceram. Soc., Cilt 27, 2401-2406, 2007.

Wang, P.E. ve Chaki, T.K., “Mechanical properties of sintered calcium phosphates, bioceramics: Materials and Applications”, edited by G. Fischman, A. Clare, L. Hench, Ceram. Trans., Cilt 48, 225-234, 1995.

Shannon, R.D., “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Crystallographica Section A, Cilt 32, 751-767, 1976.

Jha, L.J., Best, M., Knowles, J.C., Rehman, I., Santos, J.D. ve Bonfield, W., “Preparation and characterization of fluoride substituted apatites”, J. Mater. Sci. Mater. Med., Cilt 8, 185-191, 1997.

Slosarczyk, A., Paluszkiewicz, C., Gawlicki, M. ve Paszkiewicz, Z., “The FTIR spectroscopy and QXRD studies of calcium phosphate based materials produced from the powder precursors with different Ca/P ratios”, Ceram. Inter., Cilt 23, 297-304, 1997.

Azami, M., Jalilifiroozinezhad, S., Mozafari, M. ve Rabiee, M., “Synthesis and solubility of calcium fluoride/hydroxy-fluorapatite nanocrystals for dental application”, Ceram. Inter., Cilt 37, 2007-2014, 2011.

Basar, B., Tezcaner, Keskin, D. ve Evis, Z., “Improvements in microstructural, mechanical, and biocompatibility properties of nano-sized hydroxyapatites doped with yttrium and fluoride”, Ceram. Inter., Cilt 36, 1633-1643, 2010.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.