DÜŞÜK AKTİF KARBON İÇERİKLİ SİMETRİK SÜPERKAPASİTÖR UYGULAMASI

Muzaffer Balbaşı, Alpay Şahin
1.763 498

Öz


  Bu çalışmada, aktif karbon içeriği %40 olan simetrik süperkapasitörün elektrokimyasal performansı farklı sulu elektrolitler içinde galvanostatik şarj-deşarj tekniği kullanılarak incelendi. Ortalama spesifik kapasitans değerleri sırasıyla 1,0 M H2SO4, 6,0 M KOH ve 0.5 M Na2SO4 104 Farad/g, 92 Farad/g ve 71 Farad/g olarak bulunmuştur. En yüksek ortalama spesifik kapasite değeri (104 Farad/g), muhtemelen karbon elektrotların yüzeyleri üzerinde daha yüksek iyonik iletkenlik değeri bulunduğundan sülfirik asitle elde edilmiştir. Galvanostatik şarj-deşarj çevrimleri boyunca herhangi bir redoks reaksiyonu gözlenmemiştir ve süperkapasitör düzeneği tersinir şekilde çalışmaktadır.  Şarj-deşarj çevrimleri sadece elektrostatik yük biriktirme mekanizmasına dayalıdır ve süperkapasitör bir elektrokimyasal çift-tabakalı kapasitör gibi yarı-kapasitif bir davranış sergilemektedir. Spesifik enerji yoğunluğu 4-10  W Saat/kg değerleri arasında elde edilirken, spesifik güç çıkışı 100-1100 W/kg değerleri arasındadır. Uygun enerji yoğunluğu değerleri elde etmek için, seçilen elektrot materyali kendi gözenek boyutuyla uyumlu iyon büyüklüğünde iyonlar içeren ve elektrot-elektrolit ara yüzey alanlarına etkin bir şekilde erişim sağlayan elektrolitlerle birlikte kullanılmalıdır. 

Anahtar kelimeler


Süperkapasitör; Aktif karbon; Çevrimli voltametri; Galvanostatik şarj-deşarj çevrimleri

Tam metin:

PDF


DOI: http://dx.doi.org/10.17341/gummfd.63887

Referanslar


Zhu Y., Liu E., Luo Z., Hu T., Liu T., Li Z., Zhao Q., A hydroquinone redox electrolyte for polyaniline/SnO2 supercapacitors, Electrochimica Acta, (118), 106-111, 2014.

Conway B.E., Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications, Kluwer Academic, Plenium Publ., NY, 1999.

Min S., Zhao C., Chen G., Qian X., One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2films on nickel foam for high performance supercapacitors, Electrochimica Acta,115 , 155-164, 2014.

Diez N., Díaz P., Álvarez P., González Z., Granda M., Blanco C., Santamaría R., Menéndez R., Activated carbon fibers prepared directly from stabilized fibers foruse as electrodes in supercapacitors, MaterialsLetters , 136, 214-217, 2014.

Peng C., Yan X., Wang R., Lang J., Oub Y., Xueb Q., Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes, Electrochimica Acta ,87 , 401-408, 2013.

Calvo E.G., Lufrano F., Staiti P., Brigandì A., Arenillas A. , Menéndez J.A., Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel, Journal of Power Sources , 241 ,776-782, 2013.

Jiang L., Yan J., Hao L., Xue R., Sun G., Yi B., High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors, Carbon, 56 ,146-154, 2013.

Hu S., Zhang S., Pan N., Hsieh Y., High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes, Journal of Power Sources, 270, 106-112, 2014.

Li X., Wei B., Supercapacitors based on nanostructured carbon, Nano Energy, 2, 159-173, 2013.

Pandolfo A.G., Hollenkamp A.F., Carbon properties and their role in supercapacitors, Journal of Power Sources, 157 ,11-27, 2006.

Lei W., He P., Wanga Y., Zhang X., Xia A., Dong F., Solvothermal preparation of microspherical shaped cobalt–manganese oxide as electrode materials for supercapacitors,Composites Science and Technology, 102 , 82-86, 2014.

Wu M., Snook G.A., Chen G.Z., Fray D.J., Redox deposition of manganese oxide on graphite for supercapacitors, Electrochemistry Communications , 6 , 499-504, 2004.

Wang H., Yi H., Chen X., Wang X., Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties, Electrochimica Acta ,105 , 353- 361, 2013.

Lokhande C.D., . Dubal D.P, Joo O-S., Metal oxide thin film based supercapacitors, Current Applied Physics, 11 , 255-270, 2011.

Zhang Y. , Li G., Lv Y., Wanga L.Z., Zhang A., Song Y., Huang B., Electrochemical investigation of MnO2 electrode material for supercapacitors, International Journal of Hydrogen Energy, 36 , 11760-11766, 2011.

Muthulakshmi B., Kalpana D., Pitchumani S., Renganathan N.G., Electrochemical deposition of polypyrrole for symmetric supercapacitors, Journal of Power Sources, 158 ,1533-1537, 2006.

Wu Z.S., Feng X., Cheng H-M., Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage, National Science Review, Vol. 1, No. 2., 277-292, 2014.

Tan Y.B., Lee J-M.,Graphene for supercapacitor applications, J. Mater. Chem. A, 1, 14814-14843, 2013.

Chen T., Dai L., Flexible supercapacitors based on carbon nanomaterials, J. Mater. Chem. A, 2, 10756-10775. 2014.

Mastragostino M. , Arbizzani C., Soavi F., Conducting polymers as electrode materials in supercapacitors , Solid State Ionics ,148, 493- 498, 2002.

Huang Y., Tao J., Meng W., Zhu M., Huang Y., Fu Y., Gao Y., C. Zhi, Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability, Nano Energy , 11, 518–525, 2015.

Li X., Liu Y., Guo W., Chen J., He W., Peng F., Synthesis of spherical PANI particles via chemical polymerization inionic liquid for high-performance supercapacitors, Electrochimica Acta, 135 , 550-557, 2014.

Ramya R., Sivasubramanian R., Sangaranarayanan M.V., Conducting polymers-based electrochemical supercapacitors-Progress and prospects, Electrochimica Acta ,101 ,109- 129, 2013.

Peng C., Zhang S., Jewell D., Chen G.Z. , Carbon nanotube and conducting polymer composites for supercapacitors, Progress in Natural Science, 18 , 777-788, 2008.

Snook G.A., Kao P., Best A.S., Conducting-polymer-based supercapacitor devices and electrodes, Journal of Power Sources, 196 ,1-12, 2011.

Frackowiak E. , Khomenko V., Jurewicz K., Lota K., Beguin F., Supercapacitors based on conducting polymers/nanotubes composites, Journal of Power Sources, 153 , 413-418, 2006.

Bavio M.A., Acosta G.G., Kessler T., Synthesis and characterization of polyaniline and polyaniline-Carbon nanotubes nanostructures for electrochemical supercapacitors, Journal of Power Sources, 245 ,475-481, 2014.

Gao H., Lian K., Proton-conducting polymer electrolytes and their applications in solid supercapacitors: A review, RSC Adv, 4, 33091-33113, 2014.

Lewandowski A., Olejniczak A., Galinski M., Stepniak I., Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes, Journal of Power Sources, 195, 5814-5819, 2010.

Kularatna N., Energy Storage Devices for Electronic Systems: Rechargeable Battries and Supercapacitors, Elsevier Inc.London, Ch 5. 149-182, 2015.

Qun P., Wenmao TU., Lan D., Guomin MI., Characteristics of Electric Double Layer in Different Aqueous Electrolyte Solutions for Supercapacitors MI Guomin, Wuhan University, Journal of Natural Sciences, Vol.17 No.3, 2012.

Akinwolemiwa B., Peng C., Chen G. Z., Redox Electrolytes in Supercapacitors, Journal of The Electrochemical Society, 162 (5), A5054-A5059, 2015.

Wang G., Zhang L. , Zhang J., A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41, 797-828, 2012.

Senthilkumar S.T., Selvan R.K., Lee Y. S., Melo J.S., Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte, J. Mater. Chem. A, 1, 1086-1095, 2013.

Szubzda B., Szmaja A., Ozimek M., Mazurkiewicz S., Polymer membranes as separators for supercapacitors, Appl. Phys. A , 117,1801-1809, 2014.

Dutt D., Singh V., Ray A.K., Development of Specialty Papers is an Art: Electrical Insulation Paper from Indigeneous Raw Materials-Part IX, Journal of Scientific and Industrial Research, Vol.62, 1145-1151, 2003.

Cameron C.G., Fitzsimmons S.M., Supercapacitor separators and polypyrrole composites, Defence R&D Canada-Atlantic, Technical memorandum, DRDC Atlantic TM 2008-219, 2008.

Shao Z-G., Hsing I-M., Zhang H., Yi B., Influence of anode diffusion layer on the performance of a liquid feed direct methanol fuel cell by AC impedance spectroscopy, Int. J. Energy Res., 30:1216-1227, 2006.

Yu H., Wu J., Fan L., Xu K., Zong X., Lin Y., Lin J., Improvement of the performance for quasi-solid-state supercapacitor by using PVA-KOH-KI polymer gel electrolyte, Electrochimica Acta 56 ,6881-6886, 2011.

Zhang X., Wang X., Jiang L., Wu H., Wu C., Su J., Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons, J. Power Sources 216,290-296,2012.

Qu Q.T., Wang B., Yang L.C., Shi Y., Tian S., Wu Y.P., Study on electrochemical performance of activated carbon in aqueous Li2SO4,Na2SO4 and K2SO4 electrolytes, Electrochem. Commun. 10, 1652-1655, 2008.

Perera S.D., Liyanage A.D., Nijem N., Ferraris J.P. , Chabal Y.J., Balkus Jr K.J., Vanadium oxide nanowire e Graphene binder free nanocomposite paper electrodes for supercapacitors: A facile green approach, Journal of Power Sources 230 , 130-137, 2013.

Yu H., Wu J., Fan L., Lin Y., Xu K., Tang Z., Cheng C., Tang S., Lin J., Huang M., Lan Z., A novel redox-mediated gel polymer electrolyte for high-performance Supercapacitor, Journal of Power Sources 198,402-407, 2012.

Roldan S., Gonzalez Z., Blanco C., Granda M., Menendez R., Santamaria R., Redox-active electrolyte for carbon nanotube-based electric double layer capacitors, Electrochimica Acta 56, 3401-3405, 2011.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.