Mobilya Endüstrisi Atıklarından Katalitik Piroliz Yöntemi İle Biyoyakıt Üretimi

Ayhan ÖZÇİFÇİ, Günay ÖZBAY
3.309 1.070

Öz


Bu çalışmada, sarıçam (Pinus sylvestris L.) odun talaşı biyokütle kaynağı olarak değerlendirilmiş, sabit yataklı reaktörde, katalizörlü ve katalizörsüz (termal) pirolizi gerçekleştirilmiştir. Deneylerde piroliz ürünlerinin verimleri üzerine sıcaklık ve katalizör tipi gibi parametrelerin etkisi araştırılmıştır. 0,850-1,60 mm parçacık
boyutundaki deney örneklerinin pirolizi; 400, 500 ve 600 °C sıcaklıklarda, 5 °C/min ısıtma hızında ve 30 ml/min sürükleyici azot gazı (N2) akış hızında gerçekleştirilmiştir. Katalizör olarak Na2CO3 ve K2CO3 bazik tuzları ile FeCl3 Lewis asidi kullanılmıştır. Sonuç olarak, sıcaklık ve katalizör tipinin katı, sıvı ve gaz ürün verimlerinde etkili parametreler olduğu belirlenmiştir. Ayrıca odun talaşlarından katalitik piroliz yöntemi ile elde edilen sıvı ürünlerin biyoyakıt veya değerli kimyasal madde olarak kullanılabileceği tespit edilmiştir.

Anahtar kelimeler


Biyokütle, biyoyakıt, sarıçam (Pinus sylvestris L.), piroliz

Tam metin:

PDF


Referanslar


Calkins, M., “Materials for sustainable sites”, John

Wiley & Sons Inc., Hoboken, New Jersey, 14-24,

Inderwildi, O. R. and King, D. A., “Quo vadis

biofuels?”, Energy & Environmental Science, 2

(4): 343-346 ,2009.

Kantarelis, E. and Zabaniotou, A., “Valorization of

cotton stalks by fast pyrolysis and fixed bed air

gasification for syngas production as precursor of

second generation biofuels and sustainable

agriculture”, Bioresource Technology, 100 (2):

-947, 2009.

Qi, W. Y, Hu, C. W., Li, G. Y., Guo, L. H., Yang,

Y., Luo, J., Miao, X. and Du, Y., “Catalytic

pyrolysis of several kinds of bamboos over zeolite

NaY”, Green Chemistry, 8 (2): 183-190, 2006.

Wang, C., Du, Z., Pan, J., Li, J. and Yang, Z.,

“Direct conversion of biomass to bio-petroleum at low temperature”, Journal of Analytical and

Applied Pyrolysis, 78 (2): 438-444, 2007.

Tsai, W. T., Lee, M. K. and Chang, Y. M., “Fast

pyrolysis of rice husk: Product yields and

compositions”, Bioresource Technology, 98 (1):

-28, 2007.

Basu, P., “Biomass gasification and pyrolysis

practical design and theory”, Academic Press is an

imprint of Elsevier, USA, 75-78, 2010.

Nilsen, M. H., Antonakou, E., Bouzga, A.,

Lappas, A., Mathisen, K. and Stöcker, M.,

“Investigation of the effect of metal sites in Me-Al-

MCM-41 (Me=Fe, Cu or Zn) on the catalytic

behavior during the pyrolysis of wooden based

biomass”, Microporous and Mesoporous

Materials, 105 (1-2): 189-203, 2007.

Nakai, T., Kartal, S. N., Hata, T. and Imamura, Y.,

“Chemical characterization of pyrolysis liquids of

wood-based composites and evaluation of their

bio-efficiency”, Building and Environment, 42

(3): 1236-1241, 2007.

Şensöz, S., Angın, D. ve Demiral, İ., “Kızılçam

odun kabuğunun pirolizi ve ürünlerinin

incelenmesi”, Yenilebilir Enerji Kaynakları

Sempozyumu, İzmir, 147-151, 2001.

Gerçel, H. F., “Bio-oil production from

Onopordum acanthium L. by slow pyrolysis”,

Journal of Analytical and Applied Pyrolysis, 92

(1): 233-238, 2011.

Heo, S. H., Park, H. J., Park, Y.-K., Ryu, C., Suh,

D. J., Suh, Y.-W., Yim, J.-H. and Kim, S.-S.,

“Bio-oil production from fast pyrolysis of waste

furniture sawdust in a fluidized bed”,

Bioresource Technology, 101 (1): 91-96, 2010.

American Society for Testing and Materials,

“Standard test method for direct moisture content

measurement of wood and wood-base materials”,

ASTM Standards D 4442-92, Easton, M. D.,

USA, 1997.

American Society for Testing and Materials,

“Standard test method for volatile matter in

analysis sample refuse derived fuel”, ASTM

Standards E-897-88, Easton, M. D., USA, 2004.

American Society for Testing and Materials,

“Standard test method for ash in wood”, ASTM

Standards D-1102-84, Easton, M. D., USA,

Rowell, R. M., Pettersen, R., Han, J. S., Rowell, J.

S. and Tshabalala, M. A., “Handbook of wood

chemistry and wood composites”, CRC Press,

, 2005.

Wise, L. E. and John, E. C., “Wood chemistry”,

Reinhold Publication Co, New York, U.S.A., 1-

: 1330, 1952.

Technical Association of the Pulp and Paper

Industry, “Acid-insoluble lignin in wood and

pulp”, TAPPI T 222 om-02, Tappi Pres, Atlanta,

GA, U.S.A., 2002.

Technical Association of the Pulp and Paper

Industry, “Solvent extractives of wood and pulp”, TAPPI T 204 cm-97, Tappi Pres, Atlanta, GA,

USA, 1997.

Wang, Z., Cao, J. and Wang, J., “Pyrolytic

characteristics of pine wood in a slowly heating

and gas sweeping fixed-bed reactor”, Journal of

Analytical and Applied Pyrolysis, 84 (2): 179-

, 2009.

Fagbemi, L., Khezami, L. and Capart, R.,

“Pyrolysis products from different biomasses:

Application to the thermal cracking of tar”,

Applied Energy, 69 (4): 293-306, 2001.

Liaw, S.-S., Wang, Z., Ndegwa, P., Frear, C., Ha,

S., Li, C.-Z. and Garcia-Perez, M., “Effect of

pyrolysis temperature on the yield and properties

of bio-oils obtained from the auger pyrolysis of

Douglas Fir Wood”, Journal of Analytical and

Applied Pyrolysis, 93: 52-62, 2012.

Erşen, T. ve Pehlivan, D., “Yüksek yoğunluklu

polietilen–odun karışımlarının birlikte pirolizi”, J.

Fac. Eng. Arch. Gazi Univ., 26, (3): 607-612,

Aho, A., Kumar, N., Eränen, K., Salmi, T., Hupa,

M. and Murzin, D. Y., “Catalytic pyrolysis of

woody biomass in a fluidized bed reactor:

Influence of the zeolite structure”, Fuel, 87 (12):

-2501, 2008.

Zhong, C. and Wei, X., “A comparative

experimental study on the liquefaction of wood”,

Energy, 29 (11): 1731-1741, 2004.

Savage, P. E., Levine, R. B., and Huelsman, C.

M.,“Hydrothermal processing of biomass”,

Thermochemical Conversion of Biomass to Liquid

Fuels and Chemicals, Edited by Mark Crocker,

The Royal Society of Chemistry, Cambridge,

UK., 1: 192-220, 2010.

Qi, Z., Jie, C., Tiejun, W. and Ying, X., “Review

of biomass pyrolysis oil properties and upgrading research”, Energy Conversion and

Management, 48 (1): 87-92, 2007.

Branca, C., Giudicianni, P. and Di Blasi, C., “GCMS

characterization of liquid generated from lowtemperature

pyrolysis of wood”, Industrial &

Engineering Chemistry Research, 42 (14):

-3202, 2003.

Ingemarsson, A., Nilsson, U., Nilsson, M.,

Pedersen, J. R. and Olsson, J. O., “Slow pyrolysis

of spruce and pine samples studied with GC/MS

and GC/FTIR/FID”, Chemosphere, 36 (14):

-2889, 1998.

Zeitsch, K. J. “Applications of Furfural”, The

chemistry and technology of furfural and its many

by-products, Elsevier publication, Netherlands,

-103, 2000.

Lu, Q., Wang, Z., Dong, C., Zhang, Z., Zhang, Y.,

Yang, Y. and Zhu, X., “Selective fast pyrolysis of

biomass impregnated with ZnCl2: Furfural

production together with acetic acid and activated

carbon as by-products”, Journal of Analytical

and Applied Pyrolysis, 91 (1): 273-279, 2011.

Colombini, M. P., Orlandi, M., Modugno, F.,

Tolppa, E.-L., Sardelli, M., Zoia, L. and Crestini,

C., “Archaeological wood characterisation by

PY/GC/MS, GC/MS, NMR and GPC techniques”,

Microchemical Journal, 85 (1): 164-173, 2007.

Özbay, G., “Odun ve Odun Esaslı Kompozit

Malzeme Talaşlarının Termal ve Katalitik Piroliz

Yöntemi ile Sıvılaştırılması”, Doktora Tezi,

Karabük Üniversitesi Fen Bilimleri Enstitüsü,

Karabük, 89-95, 2012.

López, D., Acelas, N. and Mondragón, F.,

“Average structural analysis of tar obtained from

pyrolysis of wood”, Bioresource Technology,

(7): 2458-2465, 2010.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.