GELENEKSEL WEB TABANLI ÖĞRETİM SİSTEMLERİNDEN UYARLANIR ÖĞRETİM SİSTEMİNE GEÇİŞ: UHÖS İÇİN TASARIM YAKLAŞIMLARININ İNCELENMESİ

Şeref SAĞIROĞLU, İlhami ÇOLAK, H. Tolga KAHRAMAN
701 179

Öz


Geleneksel bilgisayar destekli öğretim sistemleri kullanıcıların bireysel farklılıklarını dikkate almaksızın tüm kullanıcılar için aynı öğretim stratejisini kullanarak statik sayfalardan oluşan öğretim materyalini öğrencilere sunmaktadırlar. Bu durum, bilgisayar destekli öğretim sistemlerinin sınıf ortamında gerçekleştirilen yüz-yüze öğretim yöntemine alternatif olamadığı gibi, öğretim etkinliği açısından kabul edilebilir bir kazanımın sağlanamamasına sebep olmaktadır. Bu makalede, bilgisayar destekli öğretim sistemlerinde öğrenim verimliliğini üst düzeye çıkartan, geleneksel sistemlerden tamamen farklı bir mimari yapıya ve tasarım yaklaşımına sahip Uyarlanır Hipermedya Öğretim Sistemi (UHÖS) incelenmektedir. Çalışmada genel bir UHÖS mimarisi verilmiştir. UHÖS’ün merkezi bileşeni olan öğrenci modelinin oluşturulması ve bu model içerisinde kullanıcının bilgi alanı hakkındaki bilgi düzeyinin tespit edilmesi örnek bir uygulama ile açıklanmıştır. UHÖS'ün geleneksel sistemlere göre üstünlükleri sunulmuş ve mevcut çalışmalar değerlendirilmiştir.

Anahtar kelimeler


Uyarlanır hipermedya öğretim sistemi, bilgisayar destekli öğretim sistemi, kullanıcı modelleme, bilgi alanı modelleme, uyarlama modeli

Tam metin:

PDF


Referanslar


Brusilovsky, P., “Adaptive navigation support in

educational hypermedia: the role of student

knowledge level and the case for metaadaptation”,

British Journal of Educational

Technology”, Vol. 34, No 4, 487–497, (2003).

Anderson, J. R., “The Expert Module”,

Foundations of Intelligent Tutoring Systems,

-53, (1988).

Kavcic, A., "Fuzzy User Modeling for Adaptation

in Educational Hypermedia", IEEE

Transactions on Systems, Applications and

Reviews, Vol. 34, No. 4, (2004).

Cao, L., “Designing Web-Based Adaptive

Learning Environment: Distils as an Example”,

Ph. D. Thesis Faculty of New Jersey Institute of

Technology, (2001).

Rubim de Assis, A. S. F, “Inferring Dynamic

Learner Behavior for User Modeling in

Continuously Adapting Hypermedia”, Ph. D.

Thesis Faculty of Rensselaer Polytechnic

Institute Troy, New York, (2006).

Brusilovsky, P., “Developing adaptive

educational hypermedia systems: from design

models to authoring tools”, School of

Information Sciences University of Pittsburgh

Pittsburgh PA 15260, (2003).

Kahraman, H. T., Colak, I., Sagiroglu, S., “A

Web Based Adaptive Educational System”, Sixth

International Conference on Machine Learning

and Applications, IEEE computer society, 286-

, (2007).

Brusilovsky, P., “Hypadapter: An Adaptive

Hypertext System for Exploratory Learning and

Programming”, Adaptive Hypertext and

Hypermedia, Kluwer Academic Publishers, 117-

, (1996).

Ihsak, Z., Arshad M. M. R., Sumari P., “Adaptive

Hypermedia System in Education (review of

available technologies)”, IEEE ICICS-PCM

Singapore, 15-18, (2003).

Fan, J. P., Macredie. R. D., “Gender Differences

and Hypermedia Navigation: Principles for

Adaptive Hypermedia Learning Systems”,

Advances in Web-Based Education:

Personalized Learning Environments Chapter

, Hershey, PA, USA: Information Science

Publishing, 1-21, (2005).

De Bra, P., Houben, G. J., and Wu, H., “AHAM: A

Dexter-based reference model for adaptive

hypermedia applications”, Proceedings of the 10th

ACM Conference on Hypertext and Hypermedia

New York: ACM Press, 147–156, (1999).

Halasz, F. G., Schwartz, M., “The Dexter Hypertext

Reference Model”, NIST Hypertext Standardization

Workshop Gaithersburg, 1-40, (1990).

Brusilovsky, P., “Methods and techniques of

adaptive hypermedia” User Modeling and User

Adapted Interaction, 87-129, (1996).

Brusilovsky, P., “User Modeling and User-Adapted

Interaction”, Adaptive Hypermedia, 11, (2001).

Karampiperis, P., Sampson, D., “Adaptive

Resources Sequencing in Educational

Hypermedia Systems”, Educational Technology

and Society, 128-147, (2005).

Çolak, İ., Sagiroglu, S., Kahraman, H. T.,

“Architecture of Web Based Adaptive

Educational Hypermedia System”, Second

International Conference on Innovations in

Learning for the Future 2008 e-Learning, 358-

, (2008).

Armani. J., Botturi. L., “Bridging the Gap with

MAID: A Method for Adaptive Instructional

Design”, Advances in Web-Based Education:

Personalized Learning Environments, Hershey,

PA, USA: Information Science Publishing,

-178, (2005).

Magoulas, G. D., Papanikolaou, K. A.,

Grigoriadou, M., “Neuro-fuzzy Synergism for

PlNNing the Content in a Web-based Course”,

Informatics 25, 39-48, (2001).

Papanikolaou, K. A., Grigoriadou, M., Kornilakis,

H., Magoulas, G. D., “Personalizing the

Interaction in a Web-based Educational

Hypermedia System: the case of INSPIRE”,

User Modeling and User Adapted Interaction,

Kluwer Academic Publishers, 213-267, (2003).

Castillo, G., Gama, J., Breda, A. M., “An

Adaptive Predictive Model for Student

Modelling”,Advances in Web-Based Education:

Personalized Learning Environments, Hershey,

PA, USA: Information Science Publishing, 70-

, (2005).

Henze, N., Naceur, K., Nejdl, W., Wolpers, M.,

“Adaptive hyperbooks for constructivist

teaching”, Künstliche Intelligenz, (4), (1999).

Hockemeyer, C., Held, T., & Albert, D., RATH -

"A relational adaptive tutoring hypertext WWWenvironment

based on knowledge space theory”,

Proceedings of CALISCE'98, 4th International

conference on Computer Aided Learning and Instruction in Science and Engineering, June

-17, (1998).

NeumNN, G., & Zirvas, J., SKILL - A scalable

internet-based teaching and learning system. In

H. Maurer, & R. G. Olson (Eds.), Proceedings of

WebNet'98, World Conference of the WWW,

Internet, and Intranet, November 7-12, (1998).

Weber, G., Kuhl, H.-C., & Weibelzahl, S.,

“Developing adaptive internet based courses

with the authoring system NetCoach”

Proceedings of Third workshop on Adaptive

Hypertext and Hypermedia, July 35-48, (2001).

Pilar da Silva, D., Durm, R. V., Duval, E., &

Olivié, H., “Concepts and documents for

adaptive educational hypermedia: a model and a

prototype”, Computing Science Reports,

Eindhoven University of Technology, 35-43.

(1998).

De Bra, P., & Ruiter, J.-P., “AHA! Adaptive

hypermedia for all”, Proceedings of

WebNet'2001, World Conference of the WWW

and Internet, 262-268, (2001).

Vassileva, J., “DCG + GTE: Dynamic Courseware

Generation with Teaching Expertise”, Instructional

Science, 317-332, (1998).

Kelly, D., Tangney, B., “ ‘First Aid for You’:

Getting to know your Learning Style using

Machine Learning”, Proceedings of the Fifth

IEEE International Conference on Advanced

Learning Technologies (ICALT’05), (2005).

Martinez, F. E., Chen, S.Y., Liu, X., “Survey of

Data Mining Approaches to User Modeling for

Adaptive Hypermedia”, IEEE Transactions On

Systems, Applications And Reviews, Vol. 36,

No.6, 734-749, (2006).

Martinez, F. E., Magoulas, G., Chen, S.,

Macredie, R., “Modeling human behavior in

user-adapted systems: Recent advances using

soft computing techniques”, Expert Systems with

Applications ELSEVIER, 320-329, (2005).

Lee, C-S., Singh, Y. P., “Student modeling using

principal component analysis of SOM clusters”,

Proceedings of the IEEE International

Conference on Advanced Learning

Technologies (ICALT’04), 480-484, (2004).

Nykanen, O., “Inducing Fuzzy Models for

Student Classification”, Educational

Technology & Society, 223-234, (2006).

Wenger, E., "Artificial intelligence and tutoring

systems", Computational approaches to the

communication of knowledge, ACM SIGCHI

Bulletin, 71-73, (1988).

Brusilovsky, P., Eklund, J., Schwarz, E., “Webbased

Education for All: A Tool for

Development Adaptive Courseware”, Computer

Networks and ISDN Systems, Proceedings of

Seventh International World Wide Web

Conference, 291-300, (1998).

De Bra, P., Aerts, A., Berden, B., de Lange, B.,

Rousseau, B., Santic, T., Smits, D., Stash, N.,

“AHA! The Adaptive Hypermedia Architecture”,

HT’03, Nottingham, United Kingdom, ACM 1-

-704-4/03/0008, 1-4, (2003).

Brusilovsky, P., Anderson, J., "An adaptive

system for learning cognitive psychology on the

Web", Proceedings of WebNet'98, World

Conference of the WWW, Internet, and

Intranet, 92-97, (1998).

Millan, E., De-La-Cruz, J. L. P., “A Bayesian

Diagnostic Algorithm for Modeling and its

Evaluation”, User Modeling and User Adapted

Interaction, Kluwer Academic Publishers, 281-

, (2002).

Castillo, G., Gama, J., & Medas, P., "Adaptation

to drifting concepts", Progress in Artificial

Intelligence, Lecture Notes in Artificial

Intelligence, SpringerVerlag, (2003).

Wludyka. P. S., Jacobs. S. L., “Runs Rules and PCharts

for Multistream Binomial Processes”,

Communications in Statistics -Simulation and

Computation, 97–142, (2002).

Lucas. J. M., Davis. D. J., Saniga. E. M.,

“Detecting improvement using Shewhart

attribute control charts when the lower control

limit is zero”, IEEE Transactions, 38:8, 699–

, (2007).

Wang. Z., Ma. W., “Design of an Optimum

Adaptive Control Chart for Attributes”,

Proceedings of the 2003 Systems and

Information Engineering Design Symposium,

-219, (2003).

Tsiriga, V., Virvou, M., “A Framework for the

Initialization of Student Models in Web-based

Intelligent Tutoring Systems”, User Modeling and

User-Adapted Interaction, Pages: 289-316, (2004).

Mitchell. T. M., “Machine Learning”, McGraw-

Hill Science/Engineering/Math, 154-184, (1997).

Conati. C., Gertner. A., Vanlehn. K., “Using

Bayesian Networks Uncertainty in Student

Modeling”, www.cs.ubc.ca/~conati/mypapers/

umuai2002.pdf, 1-42, (2002).

Horvitz, E., Breese, J., Heckerman, D., Hovel, D.,

Rommelse, K., “The Lumiere Project: Bayesian

User Modeling for Inferring the Goals and Needs

of Software Users”, Adaptive Systems &

Interaction Microsoft Research, 1-10, (1998).

Conati, C., Gertner, A. S., Van Lehn, K.,

Druzdzel, M. J., “On-Line Student Modeling for

Coached Problem Solving Using Bayesian

Networks”, Proceedings of the Sixth

International Conference on User Modeling

(UM-97), 1-12, (1997).

Hibou, M., Labat, J. M., “Embedded Bayesian

network student models”, Information Technology

Based Higher Education and Training, ITHET

Proceedings of the Fifth International

Conference, IEEE, 468-472, (2004).

Stern, M. K., "Using Adaptive Hypermedia and

Machine Learning to Create Intelligent Web Based Courses", Ph. D. Thesis, University of

Massachusetts Amherst, 11-122, (2001).

Weber, G., Brusilovsky, P., "An Adaptive

Versatile System for Web-based Instruction",

International Journal of Artificial Intelligence

in Education, 351-384, (2001).

Chen, Q., Norcio, A. F., “Modeling Users with

Neural Architectures”, Neural Networks, 1992.

IJCNN, International Joint Conference, Vol. 1,

IEEE, 547-552, (1992).

Herder, E., Dijk, B., “Site Structure and User Navigation:

Models, Measures, and Methods”, Adaptable and

Adaptive Hypermedia Systems, Chapter 2, Hersley PA

USA: IRM Press, 19-36, (2005).




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.