ÇOK AMAÇLI TESİS YERLEŞİM PROBLEMİ İÇİN YENİ BİR MELEZ SEZGİSEL ALGORİTMA

Ramazan ŞAHİN, Orhan TÜRKBEY
3.160 1.624

Öz


Bu makalede, Çok Amaçlı Tesis Yerleşim Probleminin (ÇATYP) çözümü için, tabu listesi ile desteklenmiş,Tavlama Benzetimi’ne (TB) dayalı yeni bir melez sezgisel algoritma önerilmektedir. TB’ne tabu listesinineklenmesiyle oluşturulan yeni melez sezgisel algoritmanın en önemli avantajı, TB’nin olasılıklı yapısı korunurken,aynı zamanda kısa dönemli hafıza (tabu listesi) ile daha önce üretilen komşu çözümlerin tekrar üretilmesininengellenmesidir. Yeni melez sezgisel algoritmanın amacı, ÇATYP’nin etkin çözümler kümesini (pareto optimalset) oluşturan çözümleri kısa zaman içinde bulmaktır. Yeni melez sezgisel algoritmanın etkinliği 8 bölüm ve 4amaçtan oluşan bir örnek problem üzerinde gösterilmiştir. Algoritma ile önceden belirlenmiş ağırlıklar için en iyiyerleşim planı ile aynı zamanda problemin etkin çözümlerinin oluşturduğu pareto çözümler kümesi bulunmuştur.

Anahtar kelimeler


Tesis yerleşim problemi, çok amaçlı eniyileme, pareto optimalite, melez sezgisel algoritma.

Tam metin:

PDF


Referanslar


Jajodia, S., Minis, I., Harhalakis, G. and Proth,

J.M., “CLASS: computerized layout solutions

using simulated annealing”, International

Journal of Production Research, Cilt 30, No 1,

–108, 1992.

Muther, R., Systematic Layout Planning (SLP),

nd Edition, Cahners Books, Boston, 1974.

Armour, G.C. and Buffa, E.S., “A heuristic

algorithm and simulation approach to relative

allocation of facilities”, Management Science,

Cilt 9, 294–309, 1963.

Houshyar, A., “Computer aided facilities layout:

an interactive multi-goal approach”, Computers

and Industrial Engineering, Cilt 20, No 2, 177-

, 1991.

Chen, C.-W. and Sha, D.Y., “Heuristic approach

for solving the multi-objective facility layout

problem”, International Journal of Production

Research, Cilt 43, No 21, 4493-4507, 2005.

Malakooti, B., “Multiple objective facility layout:

a heuristic to generate efficient alternatives”,

International Journal of Production Research,

Cilt 27, No 7, 1225–1238, 1989.

Sha, D.Y. and Chen, C.-W., “A new approach to

the multiple objective facility layout problem”,

Integrated Manufacturing Systems, Cilt 12, No

, 59-66, 2001.

Rosenblatt, M.J., “The facilities layout problem:

a multi-goal approach”, International Journal

of Production Research, Cilt 17, No 4, 323-332,

Dutta, K.N. and Sahu, S., “A multigoal heuristic

for facilities design problems: MUGHAL”,

International Journal of Production Research,

Cilt 20, No 2, 147–154, 1982.

Fortenberry, J.C. and Cox, J.F., “Multiple criteria

approach to the facilities layout problem”,

International Journal of Production Research,

Cilt 23, No 4, 773–782, 1985.

Urban, T.L., “A multiple criteria model for the

facilities layout problem”, International Journal

of Production Research, Cilt 25, No 12, 1805–

, 1987.

Harmonosky, C.M. and Tothero, G.K., “A multifactor

plant layout methodology”, International

Journal of Production Research, Cilt 30, No 8,

–1789, 1992.

Suresh, G. and Sahu, S., “Multiobjective facility

layout using simulated annealing”, International

Journal of Production Economics, Cilt 32, No

, 239-254, 1993.

Chen, C.-W. and Sha, D.Y., “A design approach

to the multi-objective facility layout problem”,

International Journal of Production Research,

Cilt 37, No 5, 1175–1196, 1999.

Hahn, P.M. and Krarup, J., “A hospital facility

layout problem finally solved”, Cilt 12, No 5-6,

-496, 2001.

Kirkpatrick, S., Gelatt, Jr.C.D. and Vecchi, M.P.,

“Optimization by Simulated Annealing”,

Science, Cilt 220, No 4598, 671-680, 1983.

Blum, C. and roli, A., “Metaheuristics in

combinatorial optimization: Overview and

conceptual comparison”, ACM Computing

Surveys, Cilt 35, No 3, 268-308, 2003.

Elmohamed, S., Fox, G. and Coddington, P., “A

Comparison of Annealing Techniques for

Academic Course Scheduling”, In proceedings

of the 2nd International Conference on the

Practice and Theory of Automated

Timetabling, Syracuse, NY, USA, April 4, 146-

, 1998.

Zhang, L. and Wang L., “Optimal parameters

selection for simulated annealing with limited

computational effort”, IEEE International

Conference on Neural Networks and Signal

Processing, Nanjing, China, December 14-17,

-415, 2003.

Glover, F., “Heuristics for Integer Programming

Using Surrogate Constraints”, Decision Science,

Cilt 8, No 1, 156-166, 1977.

Zolfaghari, S. and Liang, M., “Jointly solving the

group scheduling and machining speed selection

problems: A hybrid tabu simulated and simulated

annealing approach”, International Journal of

Production Research, Cilt 37, No 10, 2377–

, 1999.

Swarnkar, R. and Tiwari, M.K., “Modeling

machine loading problem of FMSs and its

solution methodology using a hybrid tabu search

and simulated annealing-based heuristic

approach”, Robotics and Computer-Integrated

Manufacturing, Cilt 20, No 3, 199–209, 2004.

Zhang, D. and Deng, A., “An effective hybrid

algorithm for the problem of packing circles into

a larger containing circle”, Computers and

Operations Research, Cilt 32, 1941–1951, 2005.

Şahin, R. and Türkbey, O., “A new hybrid tabusimulated

annealing heuristic for the dynamic

facility layout problem”, International Journal

of Production Research, Cilt 47, No 24, 6855–

, 2009.

Wattanapongsakorn, N. and Levitan, S.P.,

“Reliability optimization models for embedded

systems with multiple applications”, IEEE

Transactions on Reliability, Cilt 53, No 3, 406–

, 2004.

Deb, K., “Multi-Objective Optimization using

evolutionary Algorithms”, 1st Edition, Wiley,

New York, 2001.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.